Refine Your Search

Search Results

Viewing 1 to 7 of 7
Journal Article

Numerical Study on Flash Boiling Spray of Multi-Hole Injector

2017-03-28
2017-01-0841
Flash boiling spray is effective in improving the atomization and evaporation characteristics for gasoline direct injection engines. However, for a multi-hole injector the morphology structure of spray has an obvious change with the fuel temperature increasing or the ambient pressure decreasing, which influences the process of mixture formation and flame propagation. Specially, the spray collapses with both long penetration and a narrow spray angle above certain high superheat degree, which deteriorates air/fuel mixing and hence increases emissions. It is not desired for engine applications while the mechanism of spray structure transformation for multi-hole injector still remains unclear. In the present study, a systematic flash boiling spray model for multi-hole injector is built to investigate the flash boiling spray of multi-hole injector.
Technical Paper

Investigation of Internal Thermal Impact Effect on Motorcycle Catalytic Converter Activity and Microstructure

2003-01-15
2003-32-0059
Chinese new legislations on two wheels and mopeds have been published recently. Depending on the latest exhaust statistic analyses, with the resulting of tighter limits, the application of catalytic converters is becoming a prevalent and a cost-efficient solution for Chinese motorcycle manufacturers. The phenomenon of exhaust temperature changes rapidly during real driving process is well known as one of major destructive factors which have effects upon converter's durability. One 125 cm3 motorcycle is selected as a typical model in this research project. Exhaust temperature of the 125 cm3 motorcycle is measured and recorded during the process of ECE 40 driving cycle. A simulation test system has been set up successfully depending on those temperature data. Conversion ratio of converter sample lost distinctly after 18 hours' thermal impact tests. After further analyses, there were not evident changes in microstructure and substance on the surface of converter.
Technical Paper

Selection of Swirl Ratio in Diesel Engines Based on Droplet Trajectory Analysis

2017-03-28
2017-01-0813
Matching fuel injection and airflow motion is critical for the optimization of fuel-air mixing and combustion process in diesel engines. In this study, the effects of swirl flow on liquid droplet motion and the selection of swirl ratio, which are known as the major concern in organizing airflow motion, were investigated based on theoretical analysis of droplet trajectories. The evaporating droplets with various initial conditions are assumed to be transported in a solid-body-like swirl field, and their trajectories were derived based on force analysis. To evaluate fuel-air mixing quality, a new parameter with respect to fuel vapor distribution was proposed. Based on this methodology, the effects of swirl velocity, droplet size, as well as liquid-gas density ratio on droplet trajectory were discussed under diesel-engine-like boundary conditions.
Technical Paper

A Simulation Study on Particle Deposition and Filtration Characteristics in Wall-Flow DPF with Inhomogeneous Wall Structure Using a Two-Dimensional Microcosmic Model

2019-04-02
2019-01-0995
A new two-dimensional wall-flow DPF microstructure model has been developed in this paper to investigate the particle deposition distribution in DPF channels and the deep-bed filtration process of DPF. The substrate wall of the DPF having a thickness of L is divided into several layers with a uniform thickness of Δy along the cross-wall direction, and each layer has specific porosity and pore size. The pressure drop, particle deposition distribution and the dynamic deep-bed filtration process of the DPF with inhomogeneous wall structure are studied under various space velocities. Besides, the differences on DPF’s performance brought by the inhomogeneous wall structure are discussed by comparing with a homogeneous wall structure.
Technical Paper

OH, soot and temperature distributions of wall-impinging diesel fuel spray under different wall temperatures

2019-12-19
2019-01-2184
OH, soot and temperature distributions of wall-impinging diesel fuel spray were investigated in a high-temperature high-pressure constant volume combustion vessel. The ambient temperature (Ta) was set as 773 K, and the wall temperature (Tw) was set as 523 K, 673 K, 773 K, respectively. Three different injection pressures (Pi) of 60 MPa, 100 MPa, 160 MPa, and the ambient pressures (Pa) of 4 MPa were applied. The OH spatial distributions of wall-impinging spray were measured by the method of OH chemiluminescence imaging. Two-color pyrometry was applied to evaluate the spatial distributions of KL factor and flame temperature of wall-impinging spray. The results reveal that, OH chemiluminescence is observed in the region near the impingement point firstly. The regions of high OH chemiluminescence intensity and high KL factor appear in the location near the wall surface along the whole combustion process.
Technical Paper

Analysis on Emission Characteristics of Urban Buses Based on Remote Online Monitoring

2021-04-06
2021-01-0601
In this study, a new system of assessment method was developed to evaluate the characteristics of urban buses based on remote online monitoring. Four types of buses, including China V emission standards diesel bus, lean-burn CNG bus, air-fuel equivalence ratio combustion CNG bus and gas-electric hybrid bus, were chosen as samples to analyze the emission characteristics of urban buses with different engine types in urban scenario. Based on the traffic conditions in Beijing, the actual emission characteristics of buses under newly-built driving conditions were analyzed. Moreover, the emission factor database of urban buses in Beijing was established to analyze the characteristics of excess emission. The research results are shown as follows. 1) Compared with other types of buses, NOX emission factor and emission rate of lean-burn CNG bus are much higher.
Technical Paper

Fuel Saving Potential of Different Turbo-Compounding Systems Under Steady and Driving Cycles

2015-04-14
2015-01-0878
The performance of three different electric turbo-compounding systems under both steady and driving cycle condition is investigated in this paper. Three configurations studied in this paper are serial turbo-compounding, parallel turbo-compounding and electric assisted turbo-compounding. The electric power, global gain of the whole system (engine and power turbine) under steady operating condition is firstly studied. Then investigation under three different driving cycles is conducted. Items including fuel consumption, engine operating point distribution and transient response performance are analyzed among which the second item is done based on statistic method combined with the results obtained under steady operating conditions. Study under steady condition indicates that electric assisted turbo-compounding system is the best choice compared with the other two systems. The performance of serial turbo-compounding is load oriented while parallel configuration is speed oriented.
X