Refine Your Search

Topic

Affiliation

Search Results

Journal Article

Quantitative Study of Concentration and Temperature of a Diesel Spray by Using Planar Laser Induced Exciplex Fluorescence Technique

2010-04-12
2010-01-0878
The Lambert-Beer's coefficient K was measured in a wide range of temperatures (400-1200K) and pressures (2-8.2 MPa) in this paper. Based on the measured MAP of K and principle of energy conservation in the sprays mass and transfer, a quantitative presentation of equivalence ratio and temperature in vapor phase sprays at diesel engine like conditions was put forward. The experimental range of temperatures was 800-1100K and 20-100 kg/m₃ for density. It was found that the maximum equivalence ratio of vapor phase spray remained fairly constant at about 3.0 and the maximum equivalence ratio appearance earlier as the ambient density increased, while the ambient temperature in the constant volume vessel was set at 800K. The maximum equivalence ratio of vapor phase spray increased from about 3.0 to about 3.7 as ambient temperature increased from 800 to 1100K.
Journal Article

Real-Time Optimal Energy Management of Heavy Duty Hybrid Electric Vehicles

2013-04-08
2013-01-1748
The performance of energy flow management strategies is essential for the success of hybrid electric vehicles (HEVs), which are considered amongst the most promising solutions for improving fuel economy as well as reducing exhaust emissions. The heavy duty HEVs engaged in cycles characterized by start-stop configuration has attracted widely interests, especially in off-road applications. In this paper, a fuzzy equivalent consumption minimization strategy (F-ECMS) is proposed as an intelligent real-time energy management solution for heavy duty HEVs. The online optimization problem is formulated as minimizing a cost function, in terms of weighted fuel power and electrical power. A fuzzy rule-based approach is applied on the weight tuning within the cost function, with respect to the variations of the battery state-of-charge (SOC) and elapsed time.
Journal Article

Effect of Valve Timing and Residual Gas Dilution on Flame Development Characteristics in a Spark Ignition Engine

2014-04-01
2014-01-1205
The goal of this research was to study and quantify the effect of exhaust valve timing and residual gas dilution on in-cylinder flow patterns, flame propagation and heat release characteristics in a spark ignition engine. Experiments were carried out in a recently developed single cylinder optical engine. Particle image velocimetry (PIV) was applied to measuring and evaluating the in-cylinder flow field. Detailed analysis of flame images combined with heat release data was presented for several engine operating conditions, giving insight into the combustion process in terms of visible flame area and flame expansion speed. Results from PIV measurement indicates that the limited alteration of the in-cylinder bulk flow could be observed with the variation of exhaust valve timing. The in-cylinder fluctuating kinetic energies and their Coefficient of Variations (COVs) decrease with the advance of the exhaust valve timing.
Journal Article

Optimal Charging of Electric Vehicles using a Stochastic Dynamic Programming Model and Price Prediction

2015-04-14
2015-01-0302
The idea of grid friendly charging is to use electricity from the grid to charge batteries when electricity is available in surplus and cheap. The goal is twofold: to avoid putting additional load on the electricity grid and to reduce the cost to the consumer. To achieve this, a smart meter and a tariff with variable electricity prices has to be in place. In Day Ahead tariff (DA), prices are announced in advance for the next day, and this information can be used to select the cheapest times to charge the battery by the required amount. The optimization method is very simple, and it only has to be run once per day. However, the balance of supply and demand is not fully known in advance. Therefore Real Time Pricing (RTP) tariff supplies electricity at spot market rate depending on the current balance.
Journal Article

Numerical Study of RCCI and HCCI Combustion Processes Using Gasoline, Diesel, iso-Butanol and DTBP Cetane Improver

2015-04-14
2015-01-0850
Reactivity Controlled Compression Ignition (RCCI) has been shown to be an attractive concept to achieve clean and high efficiency combustion. RCCI can be realized by applying two fuels with different reactivities, e.g., diesel and gasoline. This motivates the idea of using a single low reactivity fuel and direct injection (DI) of the same fuel blended with a small amount of cetane improver to achieve RCCI combustion. In the current study, numerical investigation was conducted to simulate RCCI and HCCI combustion and emissions with various fuels, including gasoline/diesel, iso-butanol/diesel and iso-butanol/iso-butanol+di-tert-butyl peroxide (DTBP) cetane improver. A reduced Primary Reference Fuel (PRF)-iso-butanol-DTBP mechanism was formulated and coupled with the KIVA computational fluid dynamic (CFD) code to predict the combustion and emissions of these fuels under different operating conditions in a heavy duty diesel engine.
Journal Article

Numerical Study of the Effect of Piston Shapes and Fuel Injection Strategies on In-Cylinder Conditions in a PFI/GDI Gasoline Engine

2014-10-13
2014-01-2670
SI-CAI hybrid combustion, also known as spark-assisted compression ignition (SACI), is a promising concept to extend the operating range of CAI (Controlled Auto-Ignition) and achieve the smooth transition between spark ignition (SI) and CAI in the gasoline engine. In order to stabilize the hybrid combustion process, the port fuel injection (PFI) combined with gasoline direct injection (GDI) strategy is proposed in this study to form the in-cylinder fuel stratification to enhance the early flame propagation process and control the auto-ignition combustion process. The effect of bowl piston shapes and fuel injection strategies on the fuel stratification characteristics is investigated in detail using three-dimensional computational fluid dynamics (3-D CFD) simulations. Three bowl piston shapes with different bowl diameters and depths were designed and analyzed as well as the original flat piston in a single cylinder PFI/GDI gasoline engine.
Technical Paper

Impact of Mode Shapes on Experimental Loss Factor Estimation in Automotive Joints

2021-08-31
2021-01-1110
This paper presents the experimental work carried out on single-lap joints fastened together with bolts and nuts to investigate the contribution of mode shapes, and the effect that bolt sizes has in dissipating energy in built-up structures. Five different bolt sizes are chosen to assemble five single-bolted single-lap joints using aluminum plates. An analogous monolithic solid piece carved from the same aluminum material is used to determine the material damping and compare it against the damping from bolted joints. The dynamic response of all structures is captured under free-free boundary conditions, and the common modes are analyzed to understand the contribution and primary source of damping in the same range of the sampling frequency.
Technical Paper

Co-Simulation Methods for Holistic Vehicle Design: A Comparison

2020-04-14
2020-01-1017
Vehicle development involves the design and integration of subsystems of different domains to meet performance, efficiency, and emissions targets set during the initial developmental stages. Before a physical prototype of a vehicle or vehicle powertrain is tested, engineers build and test virtual prototypes of the design(s) on multiple stages throughout the development cycle. In addition, controllers and physical prototypes of subsystems are tested under simulated signals before a physical prototype of the vehicle is available. Different departments within an automotive company tend to use different modelling and simulation tools specific to the needs of their specific engineering discipline. While this makes sense considering the development of the said system, subsystem, or component, modern holistic vehicle engineering requires the constituent parts to operate in synergy with one-another in order to ensure vehicle-level optimal performance.
Technical Paper

Effects of Direct Injection Timing and Air Dilution on the Combustion and Emissions Characteristics of Stratified Flame Ignited (SFI) Hybrid Combustion in a 4-Stroke PFI/DI Gasoline Engine

2020-04-14
2020-01-1139
Controlled Auto-Ignition (CAI) combustion can effectively improve the thermal efficiency of conventional spark ignition (SI) gasoline engines, due to shortened combustion processes caused by multi-point auto-ignition. However, its commercial application is limited by the difficulties in controlling ignition timing and violent heat release process at high loads. Stratified flame ignited (SFI) hybrid combustion, a concept in which rich mixture around spark plug is consumed by flame propagation after spark ignition and the unburned lean mixture closing to cylinder wall auto-ignites in the increasing in-cylinder temperature during flame propagation, was proposed to overcome these challenges.
Technical Paper

Numerical Investigations on Strong Knocking Combustion under Advanced Compression Ignition Conditions

2020-04-14
2020-01-1137
Homogeneous charge compression ignition (HCCI) combined with high compression ratio is an effective way to improve engines’ thermal efficiency. However, the severe thermodynamic conditions at high load may induce knocking combustion thus damage the engine body. In this study, advanced compression ignition knocking characteristics were parametrically investigated through RCM experiments and simulation analysis. First, the knocking characteristics were optically investigated. The experimental results show that there even exists detonation when the knock occurs thus the combustion chamber is damaged. Considering both safety and costs, the effects of different initial conditions were numerically investigated and the results show that knocking characteristics is more related to initial pressure other than initial temperature. The initial pressure has a great influence on peak pressure and knock intensity while the initial temperature on knock onset.
Technical Paper

Study on Combustion Information Feedback Based on the Combination of Virtual Model and Actual Angular Velocity Measurement

2020-04-14
2020-01-1151
Combustion closed-loop control is now being studied intensively for engineering applications to improve fuel economy. Currently, combustion closed-loop feedback control is usually based on the cylinder pressure signal, which is the most direct and exact signal that reflects engine working process. Although there were some relatively cheap types of in-cylinder pressure sensors, cylinder pressure sensors have not been widely applied because of their high price now. Moreover, the combustion analysis based on cylinder pressure imposes high requirements on the information acquisition capability of the current ECU, such as high acquisition and analog-digital conversion frequency and so on. For developing a low price and feasible technology, a new engine information feedback method based on model calculation and crank angular velocity measurement was proposed. A simplified combustion model was operated in ECU for the real-time calculation of cylinder pressure and combustion parameters.
Technical Paper

Experimental Study on Knock Mechanism with Multiple Spark Plugs and Multiple Pressure Sensors

2020-09-15
2020-01-2055
Engine knock is an abnormal phenomenon, which places barriers for modern Spark-Ignition (SI) engines to achieve higher thermal efficiency and better performance. In order to trigger more controllable knock events for study while keeping the knock intensity at restricted range, various spark strategies (e.g. spark timing, spark number, spark location) are applied to investigate on their influences on knock combustion characteristics and pressure oscillations. The experiment is implemented on a modified single cylinder Compression-Ignition (CI) engine operated at SI mode with port fuel injection (PFI). A specialized liner with 4 side spark plugs and 4 pressure sensors is used to generate various flame propagation processes, which leads to different auto-ignition onsets and knock development. Based on multiple channels of pressure signals, a band-pass filter is applied to obtain the pressure oscillations with respect to different spark strategies.
Technical Paper

Combustion Visualization and Experimental Study on Multi-Point Micro-Flame Ignited (MFI) Hybrid Lean-Burn Combustion in 4-Stroke Gasoline Engines

2020-09-15
2020-01-2070
Lean-burn combustion is an effective method for increasing the thermal efficiency of gasoline engines fueled with stoichiometric fuel-air mixture, but leads to an unacceptable level of high cyclic variability before reaching ultra-low nitrogen oxide (NOx) emissions emitted from conventional gasoline engines. Multi-point micro-flame ignited (MFI) hybrid combustion was proposed to overcome this problem, and can be can be grouped into double-peak type, ramp type and trapezoid type with very low frequency of appearance. This research investigates the micro-flame ignition stages of double-peak type and ramp type MFI combustion captured by high speed photography. The results show that large flame is formed by the fast propagation of multi-point flame occurring in the central zone of the cylinder in the double-peak type. However, the multiple flame sites occur around the cylinder, and then gradually propagate and form a large flame accelerated by the independent small flame in the ramp type.
Technical Paper

Study on Hydrodynamic Characteristics of Fuel Droplet Impact on Oil Film

2020-04-14
2020-01-1429
In order to understand the spray impinging the lubricant oil on the piston or cylinder wall in GDI engine, the Laser Induced Fluorescence (LIF) method was used to observe the phenomenon of the fuel droplets impact oil film and distinguish the fuel and oil during the impingement. The experimental results show that the hydrodynamic characteristics of impingement affected by the oil viscosity, droplets’ Weber number, oil film thickness. Crown formed after impingement. The morphology after impingement was categorized into: rings, stable crown, splash and prompt splash. Low oil film dynamic viscosity, high Weber number or thin oil film can facilitate splash. Splash droplets consist of fuel and oil, and the oil is the main component of splash droplets and crown. The empirical formula of critical We number (We) is fitted. High dimensionless oil film thickness or low oil film dynamic viscosity can increase the proportion of fuel in the crown.
Journal Article

Study on a Versatile Liquid Dosing Device for IC Engine After-Treatment System

2015-04-14
2015-01-1035
A versatile liquid dosing device along with its metering theory, which can be applied to both SCR dosing system and DPF regeneration system of IC engine after-treatment system, is presented in this paper. The device is composed of a solenoid driven plunger pump, a nozzle and a pressure tube, and is pump-end controlled by PWM signals. Both electrically resistive and conductive liquids including DEF for SCR system, fuel for DPF regeneration, and gasoline for spark ignition engine, can be dispensed quantitatively with this device. A metering theory determining the liquid discharged per injection is developed by studying the system using a physical-mathematical model. The study shows that the liquid discharge can be well correlated with a measurable variable T3, which is associated with the net output energy. Experimental investigations verified that the metering results were independent of the state changes.
Journal Article

An Experimental Investigation into DEF Dosing Strategies for Heavy Duty Vehicle Applications

2015-04-14
2015-01-1028
In recent years urea selective catalytic reduction (SCR) has become the principal method of NOx abatement within heavy duty (HD) diesel exhaust systems; however, with upcoming applications demanding NOx reduction efficiencies of above 96 % on engines producing upwards of 10 g·kWh−1 NOx, future diesel exhaust fluid (DEF) dosing systems will be required to operate stably at significantly increased dosing rates. Developing a dosing system capable of meeting the increased performance requirements demands an improved understanding of how DEF sprays interact with changing exhaust flows. This study has investigated four production systems representing a diverse range of dosing strategies in order to determine how performance is influenced by spray structure and identify promising strategies for further development. The construction of an optically accessible hot-air flow rig has enabled visualisation of DEF injection into flows representative of HD diesel exhaust conditions.
Journal Article

Disturbance Estimation Based Modeling Technique for Control and Prediction in Controllable Mechanical Turbo-Compounding System

2016-04-05
2016-01-0023
Modeling techniques matter a lot in many fields of engine engineering. Models are requested not only for control design but also for dynamic prediction. However, problems might be encountered during modeling process either because of the system complexity or the unaffordable modeling cost. As a result, a new modeling technique based on disturbance estimation is proposed in this paper. By employing the proposed modeling technique, models are set up in real time with the online information from input and output. The uncertainties of system dynamics are handled as internal disturbance of the system, while the perturbation from outside are taken as the external disturbance, and the combination of the two can be estimated online by a kind of active observer called extended state observer (ESO).
Journal Article

An Objective Measure for Automotive Surface Contamination

2018-04-03
2018-01-0727
Surface contamination, or soiling, of the exterior of road vehicles can be unsightly, can reduce visibility and customer satisfaction, and, with the increasing application of surface-mounted sensors, can degrade the performance of advanced driver-assistance systems. Experimental methods of evaluating surface contamination are increasingly used in the product development process, but the results are generally subjective. The use of computational methods for predicting contamination makes objective measures possible, but comparable data from experiment is an important validation requirement. This article describes the development of an objective measure of surface contamination arising during experiments. A series of controlled experiments using ultraviolet (UV) dye-doped water are conducted to develop a robust methodology. This process is then applied to a simplified contamination test.
Journal Article

Modelling the Effect of Spray Breakup, Coalescence, and Evaporation on Vehicle Surface Contamination Dynamics

2018-04-03
2018-01-0705
Vehicle surface contamination is an important design consideration as it affects drivers’ vision and the performance of onboard camera and sensor systems. Previous work has shown that eddy-resolving methods are able to accurately capture the flow field and particle transport, leading to good agreement for vehicle soiling with experiments. What is less clear is whether the secondary breakup, coalescence, and evaporation of liquid particles play an important role in spray dynamics. The work reported here attempts to answer this and also give an idea of the computational cost associated with these extra physics models. A quarter-scale generic Sports Utility Vehicle (SUV) model is used as a test case in which the continuous phase is solved using the Spalart-Allmaras Improved Delayed Detached Eddy Simulation (IDDES) model. The dispersed phase is computed concurrently with the continuous phase using the Lagrangian approach.
Journal Article

A Drag Coefficient for Test Cycle Application

2018-04-03
2018-01-0742
The drag coefficient at zero yaw angle is the single parameter usually used to define the aerodynamic drag characteristics of a passenger car. However, this is usually the minimum drag condition and will, for example, lead to an underestimate of the effect of aerodynamic drag on fuel consumption because the important influence of the natural wind has been excluded. An alternative measure of aerodynamic drag should take into account the effect of nonzero yaw angles and a variant of wind-averaged drag is suggested as the best option. A wind-averaged drag coefficient (CDW) is usually derived for a particular vehicle speed using a representative wind speed distribution. In the particular case where the road speed distribution is specified, as for a drive cycle to determine fuel economy, a relevant drag coefficient can be derived by using a weighted road speed.
X