Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Numerical Investigation of the Intake Flow of a Four-Valve Diesel Engine

2017-10-08
2017-01-2211
The intake process plays an important role in the operation of internal combustion engines. In the present study, a three-dimensional transient simulation of a four-valve diesel engine was performed using Large Eddy Simulation (LES) model based on software CONVERGE. The mean velocity components in three directions through the intake valve curtain, the flow separation around the intake valves, the influences of inlet jet on turbulence flow field and cycle-to-cycle variation were investigated in this work. The result shows that the mean velocity distributes non-uniformly near the valve curtain at high valve lifts. In contrast, the mean velocity distribution is uniform at low valve lifts. It is found that the flow separation occurs at valve stem, valve seat and valve sealing through the outlet of the helical port. In contrast, flow separation is only observed in the valve seat through the outlet of the tangential port.
Technical Paper

Effect of Turbulence-Chemistry Interaction on Spray Combustion: A Large Eddy Simulation Study

2019-04-02
2019-01-0203
Although turbulence plays a critical role in engines operated within low temperature combustion (LTC) regime, its interaction with chemistry on auto-ignition at low-ambient-temperature and lean-oxygen conditions remains inadequately understood. Therefore, it is worthwhile taking turbulence-chemistry interaction (TCI) into consideration in LTC engine simulation by employing advanced combustion models. In the present study, large eddy simulation (LES) coupled with linear eddy model (LEM) is performed to simulate the ignition process in n-heptane spray under engine-relevant conditions, known as Spray H. With LES, more details about unsteady spray flame could be captured compared to Reynolds-averaged Navier-Stokes equations (RANS). With LEM approach, both scalar fluctuation and turbulent mixing on sub-grid level are captured, accounting for the TCI. A skeletal mechanism is adopted in this numerical simulation, including 41 species and 124 reactions.
X