Refine Your Search

Topic

Search Results

Technical Paper

Effects of Direct Injection Timing and Air Dilution on the Combustion and Emissions Characteristics of Stratified Flame Ignited (SFI) Hybrid Combustion in a 4-Stroke PFI/DI Gasoline Engine

2020-04-14
2020-01-1139
Controlled Auto-Ignition (CAI) combustion can effectively improve the thermal efficiency of conventional spark ignition (SI) gasoline engines, due to shortened combustion processes caused by multi-point auto-ignition. However, its commercial application is limited by the difficulties in controlling ignition timing and violent heat release process at high loads. Stratified flame ignited (SFI) hybrid combustion, a concept in which rich mixture around spark plug is consumed by flame propagation after spark ignition and the unburned lean mixture closing to cylinder wall auto-ignites in the increasing in-cylinder temperature during flame propagation, was proposed to overcome these challenges.
Technical Paper

Experimental Study on Knock Mechanism with Multiple Spark Plugs and Multiple Pressure Sensors

2020-09-15
2020-01-2055
Engine knock is an abnormal phenomenon, which places barriers for modern Spark-Ignition (SI) engines to achieve higher thermal efficiency and better performance. In order to trigger more controllable knock events for study while keeping the knock intensity at restricted range, various spark strategies (e.g. spark timing, spark number, spark location) are applied to investigate on their influences on knock combustion characteristics and pressure oscillations. The experiment is implemented on a modified single cylinder Compression-Ignition (CI) engine operated at SI mode with port fuel injection (PFI). A specialized liner with 4 side spark plugs and 4 pressure sensors is used to generate various flame propagation processes, which leads to different auto-ignition onsets and knock development. Based on multiple channels of pressure signals, a band-pass filter is applied to obtain the pressure oscillations with respect to different spark strategies.
Technical Paper

Combustion Visualization and Experimental Study on Multi-Point Micro-Flame Ignited (MFI) Hybrid Lean-Burn Combustion in 4-Stroke Gasoline Engines

2020-09-15
2020-01-2070
Lean-burn combustion is an effective method for increasing the thermal efficiency of gasoline engines fueled with stoichiometric fuel-air mixture, but leads to an unacceptable level of high cyclic variability before reaching ultra-low nitrogen oxide (NOx) emissions emitted from conventional gasoline engines. Multi-point micro-flame ignited (MFI) hybrid combustion was proposed to overcome this problem, and can be can be grouped into double-peak type, ramp type and trapezoid type with very low frequency of appearance. This research investigates the micro-flame ignition stages of double-peak type and ramp type MFI combustion captured by high speed photography. The results show that large flame is formed by the fast propagation of multi-point flame occurring in the central zone of the cylinder in the double-peak type. However, the multiple flame sites occur around the cylinder, and then gradually propagate and form a large flame accelerated by the independent small flame in the ramp type.
Journal Article

Experimental Study on High-Load Extension of Gasoline/PODE Dual-Fuel RCCI Operation Using Late Intake Valve Closing

2017-03-28
2017-01-0754
The dual-fuel Reactivity Controlled Compression Ignition (RCCI) combustion could achieve high efficiency and low emissions over a wide range of operating conditions. However, further high load extension is limited by the excessive pressure rise rate and soot emission. Polyoxymethylene dimethyl ethers (PODE), a novel diesel alternative fuel, has the capability to achieve stoichiometric smoke-free RCCI combustion due to its high oxygen content and unique molecule structure. In this study, experimental investigations on high load extension of gasoline/PODE RCCI operation were conducted using late intake valve closing (LIVC) strategy and intake boosting in a single-cylinder, heavy-duty diesel engine. The experimental results show that the upper load can be effectively extended through boosting and LIVC with gasoline/PODE stoichiometric operation.
Technical Paper

Large-Scale Simulation of PEM Fuel Cell Using a “3D+1D” Model

2020-04-14
2020-01-0860
Nowadays, proton exchange membrane (PEM) fuel cell is widely seen as a promising energy conversion device especially for transportation application scenario because of its high efficiency, low operation temperature and nearly-zero road emission. Extensive modeling work have been done based on different dimensions during the past decades, including one-dimensional (1D), two-dimensional (2D), three-dimensional (3D) and intermediate combinations in between (e.g. “1+1D”). 1D model benefits from a rationally-chosen set of assumptions to obtain excellent calculation efficiency, yet at the cost of accuracy to some extent. In contrast, 3D model has great advantage over 1D model on acquiring more comprehensive information inside the fuel cell. For macro-scale modeling work, one compromise aiming to realize both acceptable computation speed and reasonable reflection of cell operation state is to simplify the membrane electrode assembly (MEA).
Technical Paper

First-Principles Research on Adsorption of NOx on Pt Cluster and BaO Cluster Supported by γ-Al2O3 (110) Surface

2020-04-14
2020-01-0357
Lean NOx trap (LNT) is a great potential NOx abatement method for lean-burn gasoline engines in consideration of exhaust aftertreatment cost and installation space. NOx firstly is adsorbed on storage sites during the lean-burn period, then reduced to N2 under catalysis of the catalyst sites in the rich-burn phase. There must be a spillover of NOx species between both types of sites. For a better understanding of this spillover process of NOx species between Pt (as the catalytic center) and BaO sites (as storage components in commercial catalyst), this work focused on the vital first step of spillover, the adsorption of NOx on clean substrate surface (γ-Al2O3 (110) surface) and Ba\Pt cluster supported by the surface. Based on first principles software VASP (Vienna Ab-initio Simulation Package), the most stable adsorption structures of NO with Pt3 clusters and (BaO)3 clusters on carrier γ- Al2O3 (110) surface were confirmed and the adsorption energy of these structures were compared.
Technical Paper

Numerical Investigation of the Combustion Kinetics of Partially Premixed Combustion (PPC) Fueled with Primary Reference Fuel

2020-04-14
2020-01-0554
This work numerically investigates the detailed combustion kinetics of partially premixed combustion (PPC) in a diesel engine under three different premixed ratio fuel conditions. A reduced Primary Reference Fuel (PRF) chemical kinetics mechanism was coupled with CONVERGE-SAGE CFD model to predict PPC combustion under various operating conditions. The experimental results showed that the increase of premixed ratio (PR) fuel resulted in advanced combustion phasing. To provide insight into the effects of PR on ignition delay time and key reaction pathways, a post-process tool was used. The ignition delay time is related to the formation of hydroxyl (OH). Thus, the validated Converge CFD code with the PRF chemistry and the post-process tool was applied to investigate how PR change the formation of OH during the low-to high-temperature reaction transition. The reaction pathway analyses of the formations of OH before ignition time were investigated.
Technical Paper

Effect of Injection Strategy on the Combustion and Knock in a Downsized Gasoline Engine with Large Eddy Simulation

2020-04-14
2020-01-0244
Strategies to suppress knock have been extensively investigated to pursue thermal efficiency limits in downsized engines with a direct-injection spark ignition. Comprehensive considerations were given in this work, including the effects of second injection timing and injector location on knock combustion in a downsized gasoline engine by large eddy simulation. The turbulent flame propagation is determined by an improved G-equation turbulent combustion model, and the detailed chemistry mechanism of a primary reference fuel is employed to observe the detailed reaction process in the end-gas auto-ignition process. The conclusions were obtained by comparing the data to the baseline single-injection case with moderate knock intensity. Results reveal that for both arrangements of injectors, turbulence intensity is improved as the injecting timing is retarded, increasing the flame propagation speed.
Journal Article

The Effects of EGR and Injection Timing on the Engine Combustion and Emission Performances Fueled by Butanol-Diesel Blends

2012-04-01
2011-01-2473
The combustion and emission characteristics of a diesel engine running on butanol-diesel blends were investigated in this study. The blending ratio of n-butanol to diesel was varied from 0 to 40 vol% using an increment of 10 vol%, and each blend was tested on a 2.7 L V6 common rail direction injection diesel engine equipped with an EGR system. The test was carried out under two engine loads at a constant engine speed, using various combinations of EGR ratios and injection timings. Test results indicate that n-butanol addition to engine fuel is able to substantially decrease soot emission from raw exhaust gas, while the change in NOx emissions varies depending on the n-butanol content and engine operating conditions. Increasing EGR ratio and retarding injection timing are effective approaches to reduce NOx emissions from combustion of n-butanol-diesel blends.
Journal Article

Numerical Study on Flash Boiling Spray of Multi-Hole Injector

2017-03-28
2017-01-0841
Flash boiling spray is effective in improving the atomization and evaporation characteristics for gasoline direct injection engines. However, for a multi-hole injector the morphology structure of spray has an obvious change with the fuel temperature increasing or the ambient pressure decreasing, which influences the process of mixture formation and flame propagation. Specially, the spray collapses with both long penetration and a narrow spray angle above certain high superheat degree, which deteriorates air/fuel mixing and hence increases emissions. It is not desired for engine applications while the mechanism of spray structure transformation for multi-hole injector still remains unclear. In the present study, a systematic flash boiling spray model for multi-hole injector is built to investigate the flash boiling spray of multi-hole injector.
Technical Paper

Advanced Gasoline Engine Management Platform for Euro IV & CHN IV Emission Regulation

2008-06-23
2008-01-1704
The increasingly stringent requirements in relation to emission reduction and onboard diagnostics are pushing the Chinese automotive industry toward more innovative solutions and a rapid increase in electronic control performance. To manage the system complexity the architecture will require being well structure on hardware and software level. The paper introduces GEMS-K1 (Gasoline Engine Management System - Kit 1). GEMS-K1 is a platform being compliant with Euro IV emission regulation for gasoline engines. The application software is developed using modeling language, the code is automatically generated from the model. The driver software has a well defined structure including microcontroller abstraction layer and ECU abstraction layer. The hardware is following design rules to be robust, 100% testable and easy to manufacture. The electronic components use the latest innovation in terms of architecture and technologies.
Technical Paper

Theoretical and Practical Mechanisms on Lowering Exhaust Emission Levels for Diverse Types of Spark Ignition Engines

2008-06-23
2008-01-1545
The exhaust aftertreatment strategy is one of the most fundamental aspects of spark ignition engine technologies. For various types of engines (e.g., carburetor engine, PFI engine and GDI engine), measuring, purifying, modeling, and control strategies regarding the exhaust aftertreatment systems vary significantly. The primary goal of exhaust aftetreatment systems is to reduce the exhaust emission levels of NOx, HC and CO as well as to lower combustion soot. In general, there is a tradeoff among different engine performance aspects. The exhaust catalytic systems, such as the three way catalyst (TWC) and lean NOx trap (LNT) converters, can be applied together with the development of other engine technologies (e.g., variable valve timing, cold start). With respect to engine soot, some advanced diagnosing techniques are essential to obtain thorough investigation of exhaust emission mechanisms.
Technical Paper

A Comparison of Conversion Efficiencies of Individual Hydrocarbon Species Across Pd- and Pt-Based Catalysts as a Function of Fuel-Air Ratio

1998-10-19
982549
Individual hydrocarbon conversion efficiencies of engine-out emissions have been measured for four different catalyst formulations (Pd-only, trimetallic, Pd/Rh, and Pt/Rh) during stoichiometric and rich operation. The measurements were carried out as a function of fuel-air equivalence ratio (Φ) using a dynamometer-controlled 1993 Ford V8 engine and capillary gas chromatography. HC conversion efficiency was examined in terms of mass conversion efficiency and also using three new definitions of catalyst conversion efficiency. The efficiencies across the four catalysts show similar trends with Φ for almost all HC species. The catalyst efficiencies for alkanes, alkenes, and aromatic species decrease as Φ increases above stoichiometric: alkane efficiencies decrease faster than alkenes which in turn decrease faster than aromatics. All efficiencies fall to zero near Φ = 1.08 except those of MTBE and acetylene, which remain near 100%.
Technical Paper

A Solution to Fuel Vaporization Problem in a Power Nozzle

2009-04-20
2009-01-1051
A power nozzle is a fuel injection actuator in which fuel is instantly compressed and then discharged by a solenoid piston pump with nozzle. Fuel vaporization inside the power nozzles is a challenging issue. This paper presents an effective solution to the fuel vaporization problem in the power nozzle. An applied physical process, fluid boundary layer pumping (FBLP), is found in this study. FBLP can result in fuel circulation within the fuel line of the power nozzle, which on one hand brings heat out of the power nozzle, and on the other hand blocks vapor from entering the piston pump.
Technical Paper

Experimental Study of Multiple Injections and Coupling Effects of Multi-Injection and EGR in a HD Diesel Engine

2009-11-02
2009-01-2807
Diesel engines have to reduce emissions to satisfy future emission legislations. The purpose of this paper is to investigate the effect of multiple injections and the combined effects of multi-injection and EGR on HD diesel engine emissions and performance. A common rail fuel injection system and high pressure EGR system based on variable geometry turbocharger (VGT) were used. Injection parameters (injection dwell and mass) were adjusted with different injection strategies (pilot-main, pilot-pilot-main, main-post and pilot-main-post) to find out the influence of these parameters on combustion and emissions. Secondly the coupling effects of multi-injection and EGR were evaluated at both high and low loads. Finally, while keeping NOx at 2.0 g/kW.h by adjusting EGR rate, the influence of injection parameters and EGR were tested to highlight their influence on smoke and BSFC.
Technical Paper

Development of an Al2O3/ZrO2-Composite High-Accuracy NOx Sensor

2010-04-12
2010-01-0041
In 1999, the first generation NOx sensor from NGK Spark Plug, Co., Ltd. was commercialized for use in gasoline LNT NOx after-treatment systems [ 1 ]. Since then, as emissions regulations and OBD requirements have become more stringent, the demand for a high-accuracy NOx sensor with fast light-off has increased, particularly for diesel after-treatment systems. To meet such market demands, NGK Spark Plug, Co., Ltd. has developed, in collaboration with Ford Motor Company, a second generation NOx sensor.
Technical Paper

Plasma-Catalysis for Diesel Exhaust Treatment: Current State of the Art

2001-03-05
2001-01-0185
Nonthermal plasma discharges in combination with catalysts are being developed for diesel aftertreatment. NOx conversion has been shown over several different catalyst materials. Particulate removal has also been demonstrated. The gas phase chemistry of the plasma discharge is described. The plasma is oxidative. NO is converted to NO2, CH3ONO2 and HNO3. Hydrocarbons are partially oxidized resulting in aldehydes and CO along with various organic species. Soot will oxidize if it is held in the plasma. When HC is present, SO2 is not converted to sulfates. Suitable plasma-catalysts can achieve NOx conversion over 70%, with a wider effective temperature range than non-plasma catalysts. NOx conversion requires HC and O2. Electrical power consumption and required exhaust HC levels increase fuel consumption by several percent. A plasma catalyst system has demonstrated over 90% particulate removal in vehicle exhaust.
Technical Paper

High Frequency Measurements of Pressure and Temperature Fluctuations in an Automotive Exhaust System During Steady State and Transient Driving Conditions

2001-03-05
2001-01-0227
Environmental concerns have prompted increasingly stringent government legislation regulating automotive fuel economy and emissions. Recent rules not only mandate lower total emissions, but also require on-board diagnostics which monitor the vehicle exhaust systems. In order to satisfy these requirements, new and improved exhaust gas sensors are continually being developed to serve as part of the engine feedback control and emissions monitoring systems. Before we can properly design these new sensors, we must attempt to better understand the harsh environment in which they will operate. In this paper, we examine the high frequency nature of pressure fluctuations found in the exhaust system for both steady state and transient engine operating conditions. We also investigate temperature fluctuations, but restrict these measurements to the sampling environment found in the packaging of a Ford Si-based microcalorimeter.
Technical Paper

Using Diesel Aftertreatment Models to Guide System Design for Tier II Emission Standards

2002-06-03
2002-01-1868
Ford Motor Company is participating in the Department of Energy's (DOE) Ultra-Clean Transportation Fuels Program with the goal to explore the development of innovative emission control systems for advanced compression-ignition direct-injection (CIDI) transportation engines. CIDI (or diesel) engines have the advantages of a potential 40% fuel economy improvement and 20% less CO2 emissions than current gasoline counterparts. To support this goal, Ford plans to demonstrate an exhaust emission control system that provides high efficiency particulate matter (PM) and NOx reduction. Very low sulfur diesel fuel will be used to enable low PM emissions, reduce the fuel economy penalty associated with the emission control system, and increase the long-term durability of the system. The end result will allow vehicles with CIDI engines to be Tier II emissions certified at a minimum cost to the consumer.
Technical Paper

Application of Urea SCR to Light-Duty Diesel Vehicles

2001-09-24
2001-01-3623
Diesel vehicles have significant advantages over their gasoline counterparts including a more efficient engine, higher fuel economy, and lower emissions of HC, CO, and CO2. However, NOx control is more difficult on a diesel because of the high O2 concentration in the exhaust, making conventional three-way catalysts ineffective. The most promising technology for continuous NOx reduction onboard diesel vehicles is Selective Catalytic Reduction (SCR) using aqueous urea. Recent work with urea SCR has involved aftertreatment for the 1.2L DIATA common-rail diesel engine. This engine was used in Ford's hybrid-electric vehicle, the Prodigy, which was developed under the PNGV (Partnership for a New Generation of Vehicles) program. An emission control system consisting of a diesel particulate filter followed by an underbody SCR system was used successfully to meet ULEV emission standards (0.2 g/mi NOx, 0.04 g/mi particulate matter (PM)).
X