Refine Your Search

Topic

Search Results

Technical Paper

Influence of Oxy-Fuel Combustion on Engine Operating Conditions and Combustion Characteristics in a High Speed Direct Injection (HSDI) Diesel Engine under Homogenous Charge Compression Ignition (HCCI) Mode

2020-04-14
2020-01-1138
Oxyfuel combustion and nitrogen-free combustion coupled with Carbon Capture and Storage (CCS) techniques have been recently proposed as an efficient method to achieve carbon free emissions and to improve the combustion efficiency in diesel engines. In this study, a 3-D computational fluid dynamics model has been used to evaluate the influence of oxyfuel-HCCI combustion on engine operating conditions and combustion characteristics in a HSDI diesel engine. Investigations have conducted using four different diluent strategies based on the volume fraction of pure oxygen and a diluent gas (carbon dioxide). The first series of investigations has performed at a constant fuel injection rating at which 4.4 mg of fuel has injected per cycle. In the second part of analysis, the engine speed was maintained at 1500 rev/min while the engine loads were varied by changing the fuel injection rates in the range of 2.8 to 5.2 mg/cycle.
Technical Paper

Numerical Investigation of the Combustion Kinetics of Partially Premixed Combustion (PPC) Fueled with Primary Reference Fuel

2020-04-14
2020-01-0554
This work numerically investigates the detailed combustion kinetics of partially premixed combustion (PPC) in a diesel engine under three different premixed ratio fuel conditions. A reduced Primary Reference Fuel (PRF) chemical kinetics mechanism was coupled with CONVERGE-SAGE CFD model to predict PPC combustion under various operating conditions. The experimental results showed that the increase of premixed ratio (PR) fuel resulted in advanced combustion phasing. To provide insight into the effects of PR on ignition delay time and key reaction pathways, a post-process tool was used. The ignition delay time is related to the formation of hydroxyl (OH). Thus, the validated Converge CFD code with the PRF chemistry and the post-process tool was applied to investigate how PR change the formation of OH during the low-to high-temperature reaction transition. The reaction pathway analyses of the formations of OH before ignition time were investigated.
Technical Paper

Effect of Injection Strategy on the Combustion and Knock in a Downsized Gasoline Engine with Large Eddy Simulation

2020-04-14
2020-01-0244
Strategies to suppress knock have been extensively investigated to pursue thermal efficiency limits in downsized engines with a direct-injection spark ignition. Comprehensive considerations were given in this work, including the effects of second injection timing and injector location on knock combustion in a downsized gasoline engine by large eddy simulation. The turbulent flame propagation is determined by an improved G-equation turbulent combustion model, and the detailed chemistry mechanism of a primary reference fuel is employed to observe the detailed reaction process in the end-gas auto-ignition process. The conclusions were obtained by comparing the data to the baseline single-injection case with moderate knock intensity. Results reveal that for both arrangements of injectors, turbulence intensity is improved as the injecting timing is retarded, increasing the flame propagation speed.
Technical Paper

Study on Methods of Coupling Numerical Simulation of Conjugate Heat Transfer and In-Cylinder Combustion Process in GDI Engine

2017-03-28
2017-01-0576
Wall temperature in GDI engine is influenced by both water jacket and gas heat source. In turn, wall temperature affects evaporation and mixing characteristics of impingement spray as well as combustion process and emissions. Therefore, in order to accurately simulate combustion process, accurate wall temperature is essential, which can be obtained by conjugate heat transfer (CHT) and piston heat transfer (PHT) models based on mapping combustion results. This CHT model considers temporal interaction between solid parts and cooling water. This paper presents an integrated methodology to reliably predict in-cylinder combustion process and temperature field of a 2.0L GDI engine which includes engine head/block/gasket and water jacket components. A two-way coupling numerical procedure on the basis of this integrated methodology is as follows.
Technical Paper

Numerical Analysis of the Steady-State Scavenging Flow Characteristics of a Two-Stroke Marine Engine

2017-03-28
2017-01-0558
The scavenging process in two-stroke marine engines not only transports burnt gas out of the cylinder but also provides fresh air for the next cycle, thereby significantly affecting the engine performance. In order to enhance fuel-air mixing, the scavenging process usually generates swirling flow in uniflow-type scavenging engines. The scavenging stability directly determines the scavenging efficiency and even influences fuel-air mixing, combustion, and emission of the engine. In the present study, a computational fluid dynamics (CFD) analysis of the scavenging process in a steady-state scavenging flow test is conducted. A precession phenomenon is found in the high swirl model, and Proper Orthogonal Decomposition (POD) method is used to analyze the reason and the multi-scale characteristics of the precession phenomenon.
Technical Paper

Development of a Reduced Chemical Mechanism for Dimethyl Ether (DME) Using a Decoupling Methodology

2017-10-08
2017-01-2191
Dimethyl ether (DME) attracts increasing attentions in recent years, because it can reduce the carbon monoxide (CO), unburned hydrocarbon (HC), and soot emissions for engines as the transportation fuel or the fuel additive. In this paper, a reduced DME oxidation mechanism is developed using the decoupling methodology. The rate constants of the fuel-related reactions are optimized using the non-dominated sorting genetic algorithm II (NSGA-II) to reproduce the ignition delay times in shock tubes and major species concentrations in jet-stirred reactors (JSR) over low-to-high temperatures. In NSGA-II, the range of the rate constants was considered to ensure the reliability of the optimized mechanism. Moreover, an improved objective function was proposed to maintain the faithfulness of the optimized mechanism to the original reaction mechanism, and a new method was presented to determine the optimal solution from the Pareto front.
Technical Paper

Effects of EGR and Injection Strategies on the Performance and Emissions of a Two-Stroke Marine Diesel Engine

2017-10-08
2017-01-2249
Clean combustion is critical for marine engines to meet the Tier III emission regulation. In this paper, the effects of EGR and injection strategies (including injection pressure, injection timing as well as multiple injection technology) on the performance and emissions of a 2-stroke, low speed marine diesel engine were investigated by using computational fluid dynamics (CFD) simulations to reach the IMO Tier III NOx emissions target and reduce the fuel consumption rate. Due to the large length scale of the marine engine, RANS simulation was performed in combination with the CTC-SHELL combustion model. Based on the simulation model, the variation of the cylinder pressure curve, the average temperature in the cylinder, the combustion heat release rate and the emission characteristics were studied.
Technical Paper

Pressure Drop and Soot Regeneration Characteristics through Hexagonal and Square Cell Diesel Particulate Filters

2017-03-28
2017-01-0979
Although diesel engines have higher output torque, lower fuel consumption, and lower HC pollutant emissions, larger amounts of NOx and PM are emitted, compared with equivalent gasoline engines. The diesel particulate filters (DPF) have proved one of the most promising aftertreatment technologies due to the more stringent particulate matters (PM) regulations. In this study, the computational fluid dynamics (CFD) model of DPF was built by utilizing AVL-Fire software code. The main objective of this paper was to investigate the pressure drop and soot regeneration characteristics of hexagonal and conventional square cell DPFs with various inlet mass flow rates, inlet temperatures, cell densities, soot loads and ash loads. Different cell geometry shapes of DPF were evaluated under various ash distribution types.
Technical Paper

Pressure Drop and Soot Accumulation Characteristics through Diesel Particulate Filters Considering Various Soot and Ash Distribution Types

2017-03-28
2017-01-0959
Although diesel engines offer higher thermal efficiency and lower fuel consumption, larger amounts of Particulate Matters (PM) are emitted in comparison with gasoline engines. The Diesel Particulate Filters (DPF) have proved one of the most promising technologies due to the “particle number” emissions regulations. In this study, the Computational Fluid Dynamics (CFD) multi-channel model of DPF was built properly by utilizing AVL-Fire software code to evaluate the pressure drop and soot accumulation characteristics of DPF. The main objective of this paper was to investigate the effects of soot (capacity and deposit forms) and ash (capacity and distribution factors) interaction on DPF pressure drop and soot accumulation, as well as the effects of DPF boundary conditions (inlet mass flow rate and inlet temperature) on pressure drop.
Technical Paper

Large Eddy Simulation of Liquid Fuel Spray and Combustion with Gradually Varying Grid

2013-10-14
2013-01-2634
In this work, large eddy simulation (LES) with a K-equation subgrid turbulent kinetic energy model is implemented into the CFD code KIVA3V to study the features of liquid fuel spray and combustion using gradually varying grid in a constant volume chamber. The characteristic time-scale combustion model (CTC) incorporating a turbulent timescale is adopted to predict the combustion process and the SHELL auto-ignition model is used to predict auto-ignition. Combustion is also simulated using Parallel Detailed Chemistry with Lu's n-heptane reduced mechanism (58 species), which has been added into the KIVA3V-LES code. The computational results are compared with Sandia experimental data for non-reacting and reacting cases. As a result, LES can capture the complex structure of the spray and temperature distribution as well as the trend of ignition delay and flame lift-off length variations. Better results are obtained using the Parallel Detailed Chemistry than the CTC model.
Technical Paper

Analysis of the Influence of Inlet Temperature on Oxy-Fuel Combustion in an HSDI Diesel Engine

2022-06-14
2022-37-0003
Carbon Capture and Storage (CCS) techniques in combination with oxy-fuel combustion have been applied as an effective way to achieve nitrogen-free combustion and zero-carbon emissions. The present study has been carried out computationally in the framework of a European project (RIVER) (funded by Interreg North-West Europe) to explore the effect of intake charge temperature on oxy-fuel combustion in an HSDI diesel engine under HCCI combustion mode. Experimental data obtained from a Ford Puma common-rail diesel engine for a conventional part-load condition at 1500 rev/min and 6.8 bar IMEP have been used to validate the CFD model. To simulate the combustion process of HCCI, a reduced chemical n-heptane-n-butanol-PAH model has been adopted. The model has 349 elementary reactions and 76 species. The simulation has been carried out at five different intake charge temperatures (140°C, 160°C, 180°C, 200°C, and 220°C) and five different intake oxygen percentages (15%, 17%, 19%, and 21% v/v).
Technical Paper

Numerical Investigation of the Effects of Physical Properties on Spray Characteristics and NVH Characteristics

2023-05-08
2023-01-1127
For liquid fueled engine, the fuel atomization affects fuel’s evaporation, combustion, noise and vibration characteristics eventually. In this study, the effects of fuel species on the internal flow and near field primary breakup characteristics of a nozzle “Spray C” are investigated. Based on the framework of OpenFOAM, the newly developed solver which coupled cavitation model and the multifluid-quasi-VOF (Volume-of-Fluid) model, and combines the LES (Large Eddy Simulation) are applied to simulate the nozzle inner flow and near field jet breakup when using diesel and biodiesel respectively. The transient characteristics of nozzle inner flow and near field spray of two different fuels were analyzed, and the variation of axial pressure and velocity of nozzle was obtained. The simulation results show that the cavitation of biodiesel with high viscosity and low saturated vapor pressure develops slower and weaker.
Technical Paper

Dynamic Characteristics Analysis and Fatigue Damage Estimation of a Compressor Blade under Fluid-Structure Interaction

2018-04-03
2018-01-1206
During the aero-engine operation, the compressor blades are subjected to periodic inertial force and aerodynamic excitation caused by blade rotation and airflow disturbance, respectively. Under the coupling alternating loads, the blade is prone to high cycle fatigue failure. In this paper, a time domain calculation model of fluid-structure interaction (FSI) is established to study the vibration characteristics of the blade and its failure modes are analyzed. Then, the fatigue damage of the blade under multi-level loading is evaluated by the nonlinear damage accumulation model. Considering the coupling effect of the airflow and the blade, computational fluid dynamics (CFD) is applied to calculate the aerodynamic parameters on the blade surface under different working conditions, which is imported to the finite element (FE) model to analyze the dynamic characteristics.
Technical Paper

Simulation of the Effect of Intake Pressure and Split Injection on Lean Combustion Characteristics of a Poppet-Valve Two-Stroke Direct Injection Gasoline Engine at High Loads

2018-09-10
2018-01-1723
Poppet-valve two-stroke gasoline engines can increase the specific power of their four-stroke counterparts with the same displacement and hence decrease fuel consumption. However, knock may occur at high loads. Therefore, the combustion with stratified lean mixture was proposed to decrease knock tendency and improve combustion stability in a poppet-valve two-stroke direct injection gasoline engine. The effect of intake pressure and split injection on fuel distribution, combustion and knock intensity in lean mixture conditions at high loads was simulated with a three-dimensional computational fluid dynamic software. Simulation results show that with the increase of intake pressure, the average fuel-air equivalent ratio in the cylinder decreases when the second injection ratio was fixed at 70% at a given amount of fuel in a cycle.
Technical Paper

Numerical Investigation on Effects of Oxygen-Enriched Air and Intake Air Humidification on Combustion and Emission Characteristics of Marine Diesel Engine

2018-09-10
2018-01-1788
In order to meet the increasingly stringent emissions restriction, it is indispensable to improve the combustion and emissions technology of high-speed marine diesel engines. Oxygen-enriched combustion and intake air humidification are effective ways to control pollution from diesel engines and improve combustion of diesel engines. In this study, the combustion and emission characteristics of supercharged intercooled marine diesel engine with humidity ratio and intake oxygen concentration were investigated by using multi-dimensional CFD model. The combustion model was established by AVL Fire code. The combination strategy of intake air humidification and oxygen-enriched combustion were optimized under partial load at 1350 rpm.
Technical Paper

Numerical study on wall film formation and evaporation

2014-04-01
2014-01-1112
The numerical models presented in this study are established based on discrete phase model (DPM) of spray dispersion and evaporation considering the cold wall operating condition of port injection system. All the models were implemented into the CFD software FLUENT. Gas flow and film flow and spray are coupled by mass, momentum and energy transfer due to spray impingement, film evaporation and surface shear stress. Influences of impact parameters including injection height, injection duration and injection angle on the formation and evaporation of wall-film are discussed. The results show that, with the increase of injection height, the maximum film thickness and wall film ratio decrease, and fuel vapor mass ratio increases. The reductions of film thickness and wall film ratio are not obvious as the increasing of injection height. Extending the injection duration could add the maximum film thickness and film area.
Technical Paper

Pressure Drop Characteristics Through DPF with Various Inlet to Outlet Channel Width Ratios

2015-04-14
2015-01-1019
The main objective of this paper was to investigate the pressure drop characteristics of ACT (asymmetric cell technology) design filter with various inlet mass flow rates, soot loads and ash loads by utilizing 1-D computational Fluid Dynamics (CFD) method. The model was established by AVL Boost code. Different ratios of inlet to outlet channel width inside the DPF (Diesel Particulate Filter) were investigated to determine the optimal structure in practical applications, as well as the effect of soot and ash interaction on pressure loss. The results proved that pressure drop sensitivity of different inlet/outlet channel width ratios increases with the increased inlet mass flow rate and soot load. The pressure drop increases with the increased channel width ratio at the same mass flow rate. When there is little soot deposits inside DPF, the pressure drop increases with the bigger inlet.
Technical Paper

Dilution Boundary Expansion Mechanism of SI-CAI Hybrid Combustion Based on Micro Flame Ignition Strategy

2019-04-02
2019-01-0954
In decade years, Spark Ignition-Controlled Auto Ignition (SI-CAI) hybrid combustion, also called Spark Assisted Compression Ignition (SACI) has shown its high-efficiency and low emissions advantages. However, high dilution causes the problem of unstable initial ignition and flame propagation, which leads to high cyclic variation of heat release and IMEP. The instability of SI-CAI hybrid combustion limits its dilution degree and its ability to improve the thermal efficiency. In order to solve instability problems and expand the dilution boundary of hybrid combustion, micro flame ignition (MFI) strategy is applied in gasoline hybrid combustion engines. Small amount of Dimethyl Ether (DME) chosen as the ignition fuel is injected into cylinder to form micro flame kernel, which can stabilize the ignition combustion process.
Technical Paper

Three-Dimensional Multi-Scale Simulation for Large-Scale Proton Exchange Membrane Fuel Cell

2019-04-02
2019-01-0381
PEMFC (proton exchange membrane or polymer electrolyte membrane fuel cell) is a potential candidate as a future power source for automobile applications. Water and thermal management is important to PEMFC operation. Numerical models, which describe the transport and electrochemical phenomena occurring in PEMFCs, are important to the water and thermal management of fuel cells. 3D (three-dimensional) multi-scale CFD (computational fluid dynamics) models take into account the real geometry structure and thus are capable of predicting real operation/performance. In this study, a 3D multi-phase CFD model is employed to simulate a large-scale PEMFC (109.93 cm2) under various operating conditions. More specifically, the effects of operating pressure (1.0-4.0 atm) on fuel cell performance and internal water and thermal characteristics are studied in detail under two inlet humidities, 100% and 40%.
Technical Paper

Characterization of Internal Flow of Intersecting Hole Nozzle for Diesel Engines

2015-09-01
2015-01-1860
The intersecting hole nozzle, in which each orifice is formed by the converging of two or more child-holes, was proposed for the purpose of enhancing the internal turbulence in diesel nozzle, so as to promote the fuel atomization. In this paper, the internal flow characteristics of a cylindrical hole nozzle and two intersecting hole nozzles are studied by CFD simulation. The results show that, compared with conventional cylindrical hole nozzle, the internal flow of intersecting hole nozzles is characterized with slower rate of pressure decrease in the hole, none or very little cavitation, as well as about 20% to 30% higher discharge coefficients, especially under conditions of high injection pressure. Additionally, the setting of the blind hole as a disturbing domain in the intersecting hole nozzle results in more perturbation for internal flow, which will be beneficial for fuel atomization.
X