Refine Your Search

Topic

Author

Search Results

Journal Article

Simultaneous Measurements of Aromatic Hydrocarbons in Exhaust using a Laser Ionization Method

2009-11-02
2009-01-2742
A simultaneous multi-composition analyzing (SMCA) resonance enhanced multi-photon ionization (REMPI) system was used to investigate gasoline engine exhaust. Observed peaks for exhaust were smaller mass numbers than those from diesel exhaust. However, large species up to three ring aromatics were observed suggesting that soot precursor forms even in the gasoline engine. At low catalyst temperature condition, the reduction efficiencies of a three-way catalyst were higher for higher mass numbers. This result indicates that the larger species accumulate in the catalyst or elsewhere due to their lower vapor pressures. To evaluate the emission of low volatility species, the accumulation should be taken into account. In the hot mode, reduction efficiencies for aromatic species of three-way catalyst were almost 99.5% however, they fall to 70% in the cold start condition.
Journal Article

Particulate Matter Trapping and Oxidation on a Catalyst Membrane

2010-04-12
2010-01-0808
Particulate matter (PM) trapping and oxidation in regeneration on the surface of a diesel particulate catalyst-membrane filter (DPMFs) were investigated in detail using an all-in-focus optical microscope. The DPMF consists of two-layer sintered filters, where a SiC-nanoparticle membrane (made from a mixture of 80 nm and 500 nm powders) covers the surface of a conventional SiC filter. Using a visualization experiment, it was shown that PMs were trapped homogeneously along fine surface pores of the membrane's top surface, whereas in the regeneration process, the particulates in contact with the membrane may have been oxidized with some catalytic effect of the SiC nanoparticles. A soot cake was reacted continuously on the nanoparticles since pushed by a gas flow. The oxidation temperature of particulate trapped on the SiC-nanoparticle membrane was about 75 degrees lower than that on the conventional diesel particulate filters (DPF) without a catalyst.
Journal Article

Investigation of Soot Oxidation Carried out on Membrane Filters Composed of SiC Nanoparticles

2015-09-01
2015-01-2015
The diesel particulate membrane filter (DPMF) is a good solution to the problem of high pressure drop that exists across diesel particulate filters (DPFs) as a result of the soot trapping process. Moreover, DPMFs that have a membrane layer composed of SiC nanoparticles can reduce the oxidation temperature of soot and the apparent activation energy. The SiC nanoparticles have an oxide layer on their surface, with a thickness less than 10 nm. From the visualization of soot oxidation on the surface of SiC nanoparticles by an environmental transmission electron microscope (ETEM), soot oxidation is seen to occur at the interface between the soot and oxide layers. The soot oxidation temperature dependency of the contact area between soot and SiC nanoparticles was evaluated using a temperature programmed reactor (TPR). The contact area between soot and SiC nanoparticles was varied by changing the ratio of SiC nanoparticles and carbon black (CB), which was used as an alternative to soot.
Journal Article

Investigation of Mechanism for Formation of EGR Deposit by in situ ATR-FTIR Spectrometer and SEM

2016-10-17
2016-01-2351
Exhaust gas recirculation (EGR) is widely used in diesel engines to reduce nitrogen oxide (NOx) emissions. However, a lacquer is formed on the EGR valve or EGR cooler due to particulate matter and other components present in diesel exhaust, causing serious problems. In this study, the mechanism of lacquer deposition is investigated using attenuated total reflection Fourier transform infrared spectrometry (ATR-FTIR) and scanning electron microscopy (SEM). Deposition of temperature-dependent lacquers was evaluated by varying the temperature of a diamond prism between 80 and 120 °C in an ATR-FTIR spectrometer integrated into a custom-built sample line, which branched off from the exhaust pipe of a diesel engine. Lacquers were deposited on the diamond prism at 100 °C or less, while no lacquer was deposited at 120 °C. Time-dependent ATR-FTIR spectra were obtained for approximately 2 h from the beginning of the experiment.
Journal Article

Microscopic Visualization of PM Trapping and Regeneration in Micro-Structural Pores of a DPF Wall

2009-04-20
2009-01-1476
Trapping and regeneration processes in a SiC wall-flow diesel particulate filter (DPF) without a catalyst were investigated in detail through microscopic visualization. By microscopic observation of the cross section and surface, the transition from depth filtration to surface filtration could be observed clearly. The open pores on the wall surface were strongly related to the filtration depth of diesel particulate matter (PM). During the regeneration process, after the soot cake was burnt out, the particulates trapped inside the surface pores were oxidized. As a result, the particulate trapping and oxidation behaviors were strongly dependent on the microstructural surface pores.
Journal Article

Visualization of Oxidation of Soot Nanoparticles Trapped on a Diesel Particulate Membrane Filter

2011-04-12
2011-01-0602
Through microscopic visualization experiments, a process generally known as depth filtration was shown to be caused by surface pores. Moreover, the existence of a soot cake layer was an important advantage for filtration performance because it could trap most of the particulates. We proposed an ideal diesel particulate filter (DPF), in which a silicon carbide (SiC) nanoparticle membrane (made from a mixture of 80 nm and 500 nm powders) instead of a soot cake was sintered on the DPF wall surface; this improved the filtration performance at the beginning of the trapping process and reduced energy consumption during the regeneration process. The proposed filter was called a diesel particulate membrane filter (DPMF). A diesel fuel lamp was used in the trapping process to verify the trapping and oxidation mechanisms of ultrafine particulate matter. Thus, the filtration performance of the membrane filters was shown to be better than that of conventional DPFs.
Journal Article

Kinetic Modeling Study of NOx Conversion Based on Physicochemical Characteristics of Hydrothermally Aged SCR/DPF Catalyst

2017-10-08
2017-01-2386
Diesel engines have better fuel economy over comparable gasoline engines and are useful for the reduction of CO2 emissions. However, to meet stringent emission standards, the technology for reducing NOx and particulate matter (PM) in diesel engine exhaust needs to be improved. A conventional selective catalytic reduction (SCR) system consists of a diesel oxidation catalyst (DOC), diesel particulate filter (DPF), and urea-SCR catalyst. Recently, more stringent regulations have led to the development of SCR systems with a larger volume and increased the cost of such systems. In order to solve these problems, an SCR catalyst-coated DPF (SCR/DPF) is proposed. An SCR/DPF system has lower volume and cost compared to the conventional SCR system. The SCR/DPF catalyst has two functions: combustion of PM and reduction of NOx emissions.
Journal Article

Scanning Electron Microscopic Visualization of Bridge Formation inside the Porous Channels of Diesel Particulate Filters

2016-10-24
2016-01-9079
Time-lapse images of particulate matter (PM) deposition on diesel particulate filters (DPFs) at the PM-particle scale were obtained via field-emission scanning electron microscopy (FE-SEM). This particle scale time-series visualization showed the detailed processes of PM accumulation inside the DPF. First, PM introduced into a micro-pore of the DPF wall was deposited onto the surface of SiC grains composing the DPF, where it formed dendritic structures. The dendrite structures were locally grown at the contracted flow area between the SiC grains by accumulation of PM, ultimately constructing a bridge and closing the porous channel. To investigate the dominant parameters governing bridge formation, the filtration efficiency by Brownian diffusion and by interception obtained using theoretical filtration efficiency analysis of a spherical collector model were compared with the visualization results.
Technical Paper

Engine Mount Characteristics Identification of Large Outboard Motor Using Experimental Modal Analysis

2006-11-13
2006-32-0083
The method was established to identify the dynamic stiffness of the engine mount using modal parameters acquired from experimental modal analysis. Vibration tests were conducted using actual large outboard motor the BF225 (165 kW), and the dynamic stiffness of the mounts was identified. The results show that this method can identify the engine mount dynamic stiffness more adequately than the conventional method, even when the engine mounts are subjected to loads corresponding to thrust force or even in the case that the stiffness of the parts supporting an outboard motor is low.
Technical Paper

Visualization Study of PM Trapping and Reaction Phenomena in Micro-structural Pores through Cross Section of DPF Wall

2007-04-16
2007-01-0917
Trapping of diesel particulates and phenomena of chemical reaction in regeneration were investigated by visualization through the cross-sectional area of a diesel-particulate-filter wall, using a digital-microscope with a high focusing depth. Herein, SiC-DPF walls were polished up to make a uniform height and to create a mirror-like surface on each SiC-particle-grain. At the beginning of the trapping process, it was observed that large particulates were trapped once in the small pores inside the wall, and then, since the flow-pattern was changed drastically, the trapped particulates were pushed out and blown off again, and finally, trapped in a region further downstream. As time passed, image analysis disclosed that since fine particulates were deposited around the SiC-particle-grain surface, the flow-channels became increasingly narrow.
Technical Paper

Lattice Boltzmann Simulation on Particle Transport and Captured Behaviors in a 3D-Reconstructed Micro Porous DPF

2010-04-12
2010-01-0534
In this study, particle transport and captured behaviors in a Diesel Particulate Filter (DPF) was investigated with Lattice Boltzmann Method. LBM calculation was performed to a 3D-reconstructed micro porous DPF substrate, which was obtained by micro-focus 3D X-ray technique. Simulating advection-diffusion behaviors of diesel particulates in micro porous channel, we adapted a LBM method used for high Peclet number flow, simulating flow conditions in DPFs. We investigated flow behaviors in a wide variety of inlet velocity. LBM simulation has clearly shown that non-dimensional flow field is similar in wide range of flow conditions in the DPF, because flow Reynolds number in the micro porous substrate is sufficiently low, dominated by laminar flow regime. It was also revealed that less than 40% pore channels was responsible for more than 80% volume flux in the porous substrate without particle loading.
Technical Paper

Fuel Characteristics Evaluation of GTL for DI Diesel Engine

2004-03-08
2004-01-0088
In this study, advantages of GTL fueled DI diesel engine were observed, then, some cautionary areas, notably the aptitude for sealing materials, were investigated. Some advantages of using GTL as a diesel engine fuel include reduction of soot emission levels, power output and fuel consumption with GTL to conventional diesel fuel operation is equivalent, super-low sulfur content of GTL and its liquid state at normal temperature and pressure. However, there are some problems with putting GTL fuel on the market, such as lubricity, aptitude for sealing materials, high cetane index and high pour point. It is necessary to use additives to improve GTL's lubricity, and selecting the most appropriate type of lubricity improver is also important. The influence of GTL on the swelling properties of standard rubber materials seem basically the same, but it is necessary to notice on used rubbers.
Technical Paper

An Elementary Simulation of Vibration Isolation Characteristics of Hydraulically Damped Rubber Mount of Car Engine

2001-04-30
2001-01-1453
Hydraulically damped rubber engine mounts (HDM) are an effective means of providing sufficient isolation from engine vibration while also providing significant damping to control the rigid body motions of the engine during normal driving conditions. This results in a system which exhibits a high degree of non-linearity in terms of both frequency and amplitude. The numerical simulation of vibration isolation characteristics of HDM is difficult due to the fluid-structure interaction between the main supporting rubber and fluid in chambers, the nonlinear material properties, the large deformation of rubber parts, structure contact problems among the inner parts, and the turbulent flow in the inertia track. In this paper an integrated numerical simulation analysis based on structural FEM and a lumped-parameter model of HDM is carried out.
Technical Paper

A Numerical Simulation of Turbulent Mixing in Transient Spray by LES (Comparison between Numerical and Experimental Results of Transient Particle Laden Jets)

2004-06-08
2004-01-2014
The purpose of this study is to investigate the turbulent mixing in a diesel spray by large eddy simulation (LES). As the first step for the numerical simulation of diesel spray by LES, the LES of transient circular gas jets and particle laden jets were conducted. The simulation of transient circular jets in cylindrical coordinates has numerical instability near the central axis. To reduce the instability of calculation, azimuthal velocity around the central axis is calculated by the linear interpolation and filter width around the axis is modified to the radial or axial grid scale level. A transient circular gas jet was calculated by the modified code and the computational results were compared with experimental results with a Reynolds number of about 13000. The computational results of mean velocity and turbulent intensity agreed with experimental results for z/D>10. Predicted tip penetration of the jet also agreed to experimental data.
Technical Paper

Optimum Engine Mounting Layout by Genetic Algorithm

2001-11-12
2001-01-2810
In this study, the genetic algorithm so called GA is newly applied for the optimization of many engine mounting parameters, calculations of stiffness matrix and inverse matrix to obtain 6 degrees of freedoms displacements at mounting points and a center of gravity. As a result, the optimized result could be shortly obtained in a minute, and an inexperienced engineer could easily make the optimum engine mounting layout, which can satisfy the vibration isolation and the non-interference in an engine compartment.
Technical Paper

The Possibility of Gas to Liquid (GTL) as a Fuel of Direct Injection Diesel Engine

2002-05-06
2002-01-1706
In this study, engine performances and exhaust emissions characteristics of compression ignition engine fueled with GTL were investigated by comparison with diesel fuel. Diesel engine could be operated fueled with GTL without any special modify for the test engine. With the high cetane number of GTL, the ignition lag was shorter, and the combustion started earlier than that of diesel fuel. Brake thermal efficiency operated with GTL increased at middle load conditions due to incomplete combustion emission such as CO and THC were lower than that of diesel fuel operation. NOx emission with GTL was comparable to diesel fuel, and there was a little decrease at high load. With GTL, soot emission was lower than with diesel fuel at above middle load condition. It seemed to be a reason of soot reduction that there was little sulphur contained in GTL.
Technical Paper

Atomization Characteristics for Various Ambient Pressure of Dimethyl Ether (DME)

2002-05-06
2002-01-1711
Recently, dimethyl ether (DME) has been attracting much attention as a clean alternative fuel, since the thermal efficiency of DME powered diesel engine is comparable to diesel fuel operation and soot free combustion can be achieved. In this experiment, the effect of ambient pressure on DME spray was investigated with observation of droplet size such as Sauter mean diameter (SMD) by the shadowgraph and image processing method. The higher ambient pressure obstructs the growth of DME spray, therefore faster breakup was occurred, and liquid column was thicker with increasing the ambient pressure. Then engine performances and exhaust emissions characteristics of DME diesel engine were investigated with various compression ratios. The minimum compression ratio for the easy start and stable operation was obtained at compression ratio of about 12.
Technical Paper

Spectroscopic Analysis of Combustion Flame Fueled with Dimethyl Ether (DME)

2003-05-19
2003-01-1797
To better understand the combustion characteristics of DME, emission intensities of DME combustion radicals from a pre-mixed burner flame were measured by a spectroscope and photomultiplier, Results were compared to other fuels, such as methane and butane. Large peaks in the band spectra from pre-mixed and diffusion DME flames were found near 310 nm, 430 nm, and 515 nm, arising from OH, CH and C2, respectively. The DME emission intensities decreased with increasing the equivalence ratio in this study. Notably, the relative decrease in the C2 band spectra peak was greater than that of the OH band. Comparing the pre-mixed DME and butane flames, the butane band spectra peaks were similar in shape, but much stronger than those for DME. However, it was remarkable that CH and C2 band spectra peaks decreased only slightly with increase in equivalence ratio compared to the DME case.
Technical Paper

Measurement of Excitation-Emission Matrix of Shock-heated PAHs using a Multi-wavelength Laser Source

2003-05-19
2003-01-1785
Measurements of Excitation-Emission Matrix (EEM) of shock-heated vapors of polycyclic aromatic hydrocarbons (PAHs) at high temperature (750-1500K) and high pressure (0.3-1.3MPa) conditions were conducted using a multi-wavelength excitation laser in order to demonstrate the potential of the single-measurement EEM fluorometry for investigation of soot precursors. Argon-diluted vapors of naphthalene and pyrene, as PAH model compounds, were heated in an optically accessible shock tube. The PAH vapors were excited by a coherent multi-wavelength “rainbow” laser light generated by converting the 4th harmonic (266nm) of a pulsed Nd:YAG laser using a Raman cell frequency converter filled with high-pressure (2MPa) methane-hydrogen mixture.
Technical Paper

Fast Burning and Reduced Soot Formation via Ultra-High Pressure Diesel Fuel Injection

1991-02-01
910225
The relation between the characteristics of a non-evaporating spray and those of a corresponding frame achieved in a rapid compression machine was investigated experimentally. The fuel injection pressure was changed in a range of 55 to 260 MPa and the other injection parameters such as orifice diameter and injection duration were changed systematically. The characteristics of the non-evaporating spray such as the Sauter mean diameter and the mean excess air ratio of the spray were measured by an image analysis technique. The time required for a pressure rise due to combustion was taken as an index to characterize the flame. It was concluded that the mean excess air ratio of a spray is the major factor which controls the burning rate and that the high injection pressure is effective in shortening the combustion duration and reducing soot formation.
X