Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Starting Process Control of a 2-Cylinder PFI Gasoline Engine for Range Extender

2020-04-14
2020-01-0315
With the increasing worldwide concern on environmental pollution, battery electrical vehicles (BEV) have attracted a lot attention. However, it still couldn’t satisfy the market requirements because of the low battery power density, high cost and long charging time. The range-extended electrical vehicle (REEV) got more attention because it could avoid the mileage anxiety of the BEVs with lower cost and potentially higher efficiency. When internal combustion engine (ICE) works as the power source of range extender (RE) for REEV, its NVH, emissions in starting process need to be optimized. In this paper, a 2-cylinder PFI gasoline engine and a permanent magnet synchronous motor (PMSM) are coaxially connected. Meanwhile, batteries and load systems were equipped. The RE co-control system was developed based on Compact RIO (Compact Reconfigurable IO), Labview and motor control unit (MCU).
Technical Paper

Optimization of Speed Fluctuation of Internal Combustion Engine Range Extender by a Dual Closed-Loop Control Strategy

2021-04-06
2021-01-0782
With the increasing concern on environmental pollution and CO2 emission all over the world, range-extended electrical vehicle (REEV) has gradually got more attention because it could avoid the mileage anxiety of the battery electrical vehicles (BEV) and get high energy efficiency. Nevertheless, NVH performance of internal combustion engine range extender (ICRE) is a critical problem that affects the driving experiences for REEV. In this paper, a two-cylinder PFI gasoline engine and a permanent magnet synchronous motor (PMSM) are coaxially mounted to run as an ICRE. The ICRE control system was established based on Compact RIO hardware and LabVIEW, who has the functions of the intake throttle PID closed-loop control, autonomous ICRE operation control, and speed PID closed-loop control. In this paper, the gasoline engine was first driven to the idle condition by PMSM in speed-control mode.
Technical Paper

Characteristics of Three-way Catalyst during Quickly Start-up Process in a PFI Engine for HEV Application

2009-04-20
2009-01-1325
The characteristics of three-way-catalyst during engine start process were investigated based on a simulated start/stop test system for HEV application. Although the catalyst has already reached its light-off temperature, the conversion efficiency is poor during engine start process due to the deviation of lambda from stoichiometric. The high concentration hydrocarbon emission spike can be stored by catalyst substrate temporarily, then it is released. This dynamic process decreases the conversion efficiency for the following exhaust hydrocarbon emission. When the initial temperature of catalyst substrate before engine start increased from 150°C to 400°C, the conversion efficiency for both the hydrocarbon and NO are increased.
Journal Article

Estimation on the Location of Peak Pressure at Quick Start of HEV Engine Employing Ion Sensing Technology

2008-06-23
2008-01-1566
In this paper an estimation method on location of peak pressure (LPP) employing flame ionization measurement, with the spark plug as a sensor, was discussed to achieve combustion parameters estimation at quick start of HEV engines. Through the cycle-based ion signal analysis, the location of peak pressure can be extracted in individual cylinder for the optimization of engine quick start control of HEV engine. A series of quick start processes with different cranking speed and engine coolant temperature are tested for establishing the relationship between the ion signals and the combustion parameters. An Artificial Neural Network (ANN) algorithm is used in this study for estimating these two combustion parameters. The experiment results show that the location of peak pressure can be well established by this method.
X