Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

77 GHz Radar Based Multi-Target Tracking Algorithm on Expressway Condition

2022-12-16
2022-01-7129
Multi-Target tracking is a central aspect of modeling the surrounding environment of autonomous vehicles. Automotive millimeter-wave radar is a necessary component in the autonomous driving system. One of the biggest advantages of radar is it measures the velocity directly. Another big advantage is that the radar is less influenced by environmental conditions. It can work day and night, in rainy or snowy conditions. In the expressway scenario, the forward-looking radar can generate multiple objects, to properly track the leading vehicle or neighbor-lane vehicle, a multi-target tracking algorithm is required. How to associate the track and the measurement or data association is an important question in a multi-target tracking system. This paper applies the nearest-neighbor method to solve the data association problem and uses an extended Kalman filter to update the state of the track.
Technical Paper

Functional Safety and Secure CAN in Motor Control System Design for Electric Vehicles

2017-03-28
2017-01-1255
Permanent magnet synchronous motors (PMSM) are widely used in the electric vehicles for their high power density and high energy efficiency. And the motor control system for electric vehicles is one of the most critical safety related systems in electric vehicles, because potential failures of this system can lead to serious harm to humans’ body, so normally a high automotive safety integrity level (ASIL) will be assigned to this system. In this paper, an ASIL-C motor control system based on a multicore microcontroller is presented. At the same time, due to the increasing number of connectivity on the vehicle, secure onboard communication conformed to the AUTOSAR standard is also implemented in the system to prevent external attacks.
Technical Paper

Current Control Method for Asymmetric Dual Three-Phase Permanent Magnet Synchronous Motor in Vehicle

2020-04-14
2020-01-0470
Based on the vector space decomposition (VSD) transformation, the phase currents of the asymmetric dual three phase permanent magnet synchronous motor (ADT-PMSM) can be mapped into three orthogonal subspaces, i.e., α-β subspace, x-y subspace and O1-O2 subspace. The mechanical energy conversion takes place in the α-β subspace, while in the x-y and O1-O2 subspaces only losses are produced. With neutral points being isolated, O1-O2 subspace can be omitted. So the vector control algorithm can control the α-β and x-y subspaces separately to realize the four dimensional current control. In the α-β subspace, deviation decoupling control method is employed to realize the mechanical energy conversion, which is robust to the motor parameters.
X