Refine Your Search

Topic

Search Results

Journal Article

Design and Thermal Analysis of a Passive Thermal Management System Using Composite Phase Change Material for Rectangular Power Batteries

2015-04-14
2015-01-0254
A passive thermal management system (TMS) using composite phase change material (PCM) for large-capacity, rectangular lithium-ion batteries is designed. A battery module consisting of six Li-ion cells connected in series was investigated as a basic unit. The passive TMS for the module has three configurations according to the contact area between cells and the composite PCM, i.e., surrounding, front-contacted and side-contacted schemes. Firstly, heat generation rate of the battery cell was calculated using the Bernardi equation based on experimentally measured heat source terms (i.e. the internal resistance and the entropy coefficient). Physical and thermal properties such as density, phase change temperature, latent heat and thermal conductivity of the composite PCM were also obtained by experimental methods. Thereafter, thermal response of the battery modules with the three TMS configurations was simulated using 3D finite element analysis (FEA) modeling in ANSYS Fluent.
Technical Paper

Optimization of Electric Vacuum Pump Mount to Improve Sound Quality of Electric Vehicle

2020-04-14
2020-01-1259
The noise and vibration of electric vacuum pump (EVP) become a major problem for electric vehicles when the vehicle is stationary. This paper aims at the EVP’s abnormal noise of an electric vehicle when stationary. Driver’s right ear (DRE) noise was tested and spectrogram analysis was carried out to identify the noise sources. In order to attenuate this kind of abnormal noise, a new EVP rubber mount with a segmented structure was introduced, which optimized the transfer path of vibration. Then dynamic stiffness and fatigue life of the EVP mount with different rubber hardness were calculated through finite element analysis (FEA) approach. Bench tests of fatigue life and DRE noise were performed to validate the FEA results. Test data of the sample mount shows that sound pressure level of DRE was dramatically attenuated and thus passengers’ ride comfort was enhanced.
Technical Paper

Characteristics of Auto-Ignition for Lubricants and Lubricant/Gasoline Based on an Innovative Single Droplet Test System

2020-04-14
2020-01-1428
Due to the advantages of low weight, low emissions and good fuel economy, downsized turbocharged gasoline direct injection (GDI) engines are widely-applied nowadays. However, Low-Speed Pre-Ignition (LSPI) phenomenon observed in these engines restricts their improvement of performance. Some researchers have shown that auto-ignition of lubricant in the combustion chamber has a great effect on the LSPI frequency. To study the auto-ignition characteristics of lubricant, an innovative single droplet auto-ignition test system for lubricant and its mixture is designed and developed, with better accuracy and effectiveness. The experiments are carried out by hanging lubricant droplets on the thermocouple node under active thermo-atmosphere provided by a small “Dibble burner”. The auto-ignition process of lubricant droplets is recorded by a high-speed camera.
Journal Article

A Novel ZSB-PAM Power Regulation Method Applied in Wireless Charging System for Vehicular Power Batteries

2015-04-14
2015-01-1194
Wireless charging system for vehicular power batteries is becoming more and more popular. As one of important issues, charging power regulation is indispensable for online control, especially when the distance or angle between chassis and ground changes. This paper proposes a novel power regulation method named Z-Source-Based Pulse-Amplitude-Modulation (ZSB-PAM), which has not been mentioned in the literatures yet. The ZSB-PAM employs a unique impedance network (two pairs of inductors and capacitors connected in X shape) to couple the cascaded H Bridge to the power source. By controlling the shoot-through state of H bridge, the input voltage to H bridge can be boosted, thus the transmitter current can be adjusted, and hence, charging current and power for batteries. A LCL-LCL resonant topology is adopted as the main transfer energy carrier, for it can work with a unity power factor and have the current source characteristic which is suitable for battery charging.
Journal Article

Study of the Combustion Characteristics of a HCCI Engine Coupled with Oxy-Fuel Combustion Mode

2017-03-28
2017-01-0649
The present work proposed to implement oxy-fuel combustion mode into a homogeneous charge compression ignition engine to reduce complexity in engine emissions after-treatment and lower carbon dioxide emission. The combination of oxy-fuel combustion mode with homogeneous charge compression ignition engine can be further optimized by the utilization of direct high temperature and pressure water injection to improve cycle performance. A retrofitted conventional diesel engine coupled with port fuel injection and direct water injection is utilized in this study. A self-designed oxygen and carbon dioxide mixture intake system with flexible oxygen fraction adjustment ability is implemented in the test bench to simulate the adoption of exhaust gas recirculation. Water injection system is directly installed in the combustion chamber with a modified high speed solenoid diesel injector.
Journal Article

Investigation of Combustion Optimization Control Strategy for Stable Operation of Linear Internal Combustion Engine-Linear Generator Integrated System

2016-06-17
2016-01-9144
The linear internal combustion engine-linear generator integrated system (LICELGIS) is an innovative structure as a range-extender for the hybrid vehicles, which contains two opposed free piston engines and one linear generator between them. The LICELGIS is a promising power package due to its high power density and multi-fuel flexibility. In the combustion process of linear engines, the top dead center (TDC) position is not stable in different cycles, which significantly affects system operations. Otherwise, pistons move away from the TDC with high-speed because of the tremendous explosive force, which incurs the short residence time of pistons around the TDC and rapid decrease of in-cylinder temperature, pressure and the combustion efficiency. In order to address this problem, a scientific simulation model which includes dynamic and thermodynamic models, is established and a combustion optimization control strategy is proposed.
Journal Article

Lubrication Analysis of Floating Ring Bearings Considering Floating Ring Heat Transfer

2016-04-05
2016-01-0485
Turbochargers improve performance in internal combustion engines. Due to low production costs, TC assemblies are supported on floating ring bearings. In current lubrication analysis of floating ring bearing, inner and outer oil film are usually supposed to be adiabatic. The heat generated by frictional power is carried out by the lubricant flow. In reality, under real operating conditions, there existed heat transfer between the inner and outer film. In this paper, the lubrication performance of floating ring bearing when considering heat transfer between inner film and outer film is studied. The lubrication model of the floating ring is established and the heat transferred through the ring between the inner and outer film is calculated. The calculation results show that heat flow between the inner and outer film under different outer film eccentricity ratio and rotate ratio has a large difference.
Technical Paper

Impact Simulation and Structural Optimization of a Vehicle CFRP Engine Hood in terms of Pedestrian Safety

2020-04-14
2020-01-0626
With the rapidly developing automotive industry and stricter environmental protection laws and regulations, lightweight materials, advanced manufacturing processes and structural optimization methods are widely used in body design. Therefore, in order to evaluate and improve the pedestrian protection during a collision, this paper presents an impact simulation modeling and structural optimization method for a sport utility vehicle engine hood made of carbon fiber reinforced plastic (CFRP). Head injury criterion (HIC) was used to evaluate the performance of the hood in this regard. The inner panel and the outer panel of CFRP hood were discretized by shell elements in LS_DYNA. The Mat54-55 card was used to define the mechanical properties of the CFRP hood. In order to reduce the computational costs, just the parts contacted with the hood were modeled. The simulations were done in the prescribed 30 impact points.
Technical Paper

Recent Progress on In-Situ Monitoring and Mechanism Study of Battery Thermal Runaway Process

2020-04-14
2020-01-0861
Lithium-ion batteries (LIBs) with relatively high energy, power density and eco-friendly characteristic are considered as a vital energy source in consumer market of portable electronics and transportation sector especially in electric vehicles (EVs). To meet the higher capacity requirements, the nickel-rich LIBs with higher capacity has been used as the commercial power batteries. However, the battery with higher energy density is more destructive, which could result in thermal runaway accidents and make the battery safety issues become more and more prominent. Thermal runaway of LIBs is one of the key scientific problems in safety issues. Until now, the inducement of thermal runaway process is complicated which perplex researchers and industry a lot. On the one hand, the internal mechanism about thermal runaway should be deeply studied. On the other hand, in-situ monitoring should be developed to supply the mechanism study and early warning.
Technical Paper

Research on Fast Filling Strategy of Large Capacity On-Board Hydrogen Storage Tank for Highway Passenger Cars

2020-04-14
2020-01-0855
In order to study the fast filling problem of large-capacity on-board hydrogen storage tank for highway passenger cars, a computational fluid dynamics (CFD) simulation model of 134L large-capacity hydrogen storage tank was established. By simulating different pre-cooling temperatures and mass flow rates, the temperature distribution and thermal transmission in the tank were observed. Due to the large ratio of length to diameter of the hydrogen tank, the temperature distribution is extremely uneven during the whole filling process, and the high temperature area is mainly concentrated in the tank tail. And the heat transfer between the gas and the tank wall is not obvious under the low and constant mass flow rate. The temperature rise process during the whole filling process under different mass flow conditions was simulated to satisfy the highest safe temperature limit.
Technical Paper

Analysis of Vibroacoustic Behaviors and Torque Ripple of SRMs with Different Phases and Poles

2020-04-14
2020-01-0467
In this study, the vibroacoustic characteristics and torque fluctuation of switched reluctance motors (SRMs) with different phases and poles have been analyzed in detail. Also, the common four SRMs, i.e., three-phase 6/4 SRM, four-phase 8/6 SRM, five-phase 10/8 SRM, and six-phase 12/10 SRM, have been selected. First, the spatial-temporal distribution characteristics of radial force in SRMs were revealed by virtue of the analytical derivation, which was validated by the 2D Fourier decomposition based on the finite-element results of radial force. Second, a multiphysics model, which was composed of an electromagnetic field, a mechanical field, and an acoustic field, was established to predict the noise behaviors of SRMs with different phases and poles. Third, the relationship between the torque fluctuation and the phases / poles of SRMs, and the relationship between the noise and the radial force / phases / poles are all analyzed.
Technical Paper

Starting Process Control of a 2-Cylinder PFI Gasoline Engine for Range Extender

2020-04-14
2020-01-0315
With the increasing worldwide concern on environmental pollution, battery electrical vehicles (BEV) have attracted a lot attention. However, it still couldn’t satisfy the market requirements because of the low battery power density, high cost and long charging time. The range-extended electrical vehicle (REEV) got more attention because it could avoid the mileage anxiety of the BEVs with lower cost and potentially higher efficiency. When internal combustion engine (ICE) works as the power source of range extender (RE) for REEV, its NVH, emissions in starting process need to be optimized. In this paper, a 2-cylinder PFI gasoline engine and a permanent magnet synchronous motor (PMSM) are coaxially connected. Meanwhile, batteries and load systems were equipped. The RE co-control system was developed based on Compact RIO (Compact Reconfigurable IO), Labview and motor control unit (MCU).
Technical Paper

Simulation and Parametric Analysis of Battery Thermal Management System Using Phase Change Material

2020-04-14
2020-01-0866
The thermophysical parameters and amount of composite phase change materials (PCMs) have decisive influence on the thermal control effects of thermal management systems (TMSs). At the same time, the various thermophysical parameters of the composite PCM are interrelated. For example, increasing the thermal conductivity is bound to mean a decrease in the latent heat of phase change, so a balance needs to be achieved between these parameters. In this paper, a prismatic LiFePO4 battery cell cooled by composite PCM is comprehensively analyzed by changing the phase change temperature, thermal conductivity and amount of composite PCM. The influence of the composite PCM parameters on the cooling and temperature homogenization effect of the TMS is analyzed. which can give useful guide to the preparation of composite PCMs and design of the heat transfer enhancement methods for TMSs.
Journal Article

The Effect of Fixture on the Testing Accuracy in the Spindle-Coupled Road Simulation Test

2018-04-03
2018-01-0130
The action of load on the component is crucial to evaluate the performance of durability. Another factor that affects fatigue life is the boundary conditions of the test specimen being tested by introducing unrealistic loads on the component of interest. The physical test is widely conducted in the laboratory. The fixture provides additional constraints on the test specimen as well as reaction forces to balance the test system [1]. The characteristics of the fixture involved in the test is important to analyze and assess the test results [2]. The impact of the reaction force of the fixture on the spindle-coupled axle road simulation test is presented in this article. A simplified 7-DoF (degrees of freedom) model is introduced to demonstrate the dynamic behavior of the vehicle. The influence on the internal load by the fixture has been analyzed. Followed by a more detailed MBS (multibodysystem) model to give a thorough understanding of the phenomenon.
Journal Article

Anti-Lock Braking System Control Design on An Integrated-Electro-Hydraulic Braking System

2017-03-28
2017-01-1578
Two control strategies, safety preferred control and master cylinder oscillation control, were designed for anti-lock braking on a novel integrated-electro-hydraulic braking system (I-EHB) which has only four solenoid valves in its innovative hydraulic control unit (HCU) instead of eight in a traditional one. The main idea of safety preferred control is to reduce the hydraulic pressure provided by the motor in the master cylinder whenever a wheel tends to be locking even if some of the other wheels may need more braking torque. In contrast, regarding master cylinder oscillation control, a sinusoidal signal is given to the motor making the hydraulic pressure in the master cylinder oscillate in certain frequency and amplitude. Hardware-in-the-loop simulations were conducted to verify the effectiveness of the two control strategies mentioned above and to evaluate them.
Technical Paper

Effect of Piston Crevice on Transient HC Emissions of First Firing Cycle at Cold Start on LPG SI Engine

2007-10-29
2007-01-4015
By changing the top-land radial clearance, this paper presents the effect of the piston crevice on the transient HC emissions of the first firing cycle at cold start on an LPG SI Engine. A fast-response flame ionization detector (FFID) was employed to measure transient HC emissions of the first firing cycle. At the same time, the transient cylinder pressure and instantaneous crankshaft speed of the engine were measured and recorded. The results show that increasing 50% crevice volume leads to 25% increase of HC emissions in the lean region and 18% increase of HC emissions in the rich region, however, the 50% increase of crevice volume contributes to 32% decease of HC emissions in the stable combustion region. For LPG SI engine, the HC emissions of the first firing cycle during cold start are relatively low in a wide range of the excess air ratio.
Technical Paper

A Study of Crevice HC Mechanism Based on the Transient HC Test Data and the Double Zone Combustion Model

2008-06-23
2008-01-1652
The effectiveness of after-treatment systems depends on the exhaust gas temperature, which is low during cold-start. As a result, Euro III, Euro IV and FTP75 require that the emissions tests include exhaust from the beginning of cold start. It is proved that 50%∼80% of HC and CO emissions are emitted during the cold start and the amount of unburned fuel from the crevices during starting is much higher than that under warmed engine conditions. The piston crevices is the most part of combustion chamber crevices, and results of mathematical simulations show that the piston crevice contribution to HC emissions is expected to increase during cold engine operation. Based on the transient HC test data and the double zone combustion model, this paper presents the study of the crevice HC Mechanism of the first firing cycle at cold start on an LPG SI Engine. A fast-response flame ionization detector (FFID) was employed to measure transient HC emissions of the first firing cycle.
Technical Paper

Study on Improving the Fuel Economy of the Engine on EP Energy-Saving Vehicle

2008-06-23
2008-01-1780
“Soichiro Honda Cup, Honda Econo-Power Competition”, is an annual international energy-saving competition which is hosted by Honda Motor Co., Ltd. Till now it has been held 27 sessions. The aims of the EP project are: promoting the development of environmental protection, making full use of limit earth resources, challenging the fuel consumption limitation of vehicle. Tongji University's students' team has participated in the competition for seven consecutive times. In order to minimize the fuel consumption of the EP energy-saving vehicle, this paper focuses on the technical methods of improving the fuel economy of the engine. Firstly, the optimization of the carburetor. Secondly, for the purpose of improving combustion efficiency, researches on dual spark plug and compression ratio are done.
Technical Paper

The Study on Fatigue Test of Cab Assembly Based on 4-Channel Road Simulation Bench

2017-03-28
2017-01-0328
The multi-body dynamics simulation and physical iteration were carried out based on the 4-channel road simulation bench, the solution of fatigue test bench which was suitable for cab with frame and suspension was designed. Large load and displacement above the suspension can be loaded on the test bench, and the same weak position of cab exposed on the road test can be assessed well on the fatigue test bench. The effectiveness of the bench test solution was verified though comparative study. And it has important reference for the same type of cab assembly with suspension in the fatigue bench test. According to the durability specifications of cab assembly, a multi-body dynamics model with a satisfactory accuracy was built. And the fixture check and virtual iteration analysis were used to verify the effectiveness of the solution. According to the road load signal analysis and multi-body dynamics analysis results, the test bench with linear guide and spherical joint was built.
Technical Paper

Design and Research of Micro EV Driven by In-Wheel Motors on Rear Axle

2016-09-18
2016-01-1950
As is known to all, the structure of the chassis has been greatly simplified as the application of in-wheel motor in electric vehicle (EV) and distributed control is allowed. The micro EV can alleviate traffic jams, reduce the demand for motor and battery capacity due to its small size and light weight and accordingly solve the problem that in-wheel motor is limited by inner space of the wheel hub. As a result, this type of micro EV is easier to be recognized by the market. In the micro EV above, two seats are side by side and the battery is placed in the middle of the chassis. Besides, in-wheel motors are mounted on the rear axle and only front axle retains traditional hydraulic braking system. Based on this driving/braking system, distribution of braking torque, system reliability and braking intensity is analyzed in this paper.
X