Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Study of the Combustion Characteristics of a HCCI Engine Coupled with Oxy-Fuel Combustion Mode

2017-03-28
2017-01-0649
The present work proposed to implement oxy-fuel combustion mode into a homogeneous charge compression ignition engine to reduce complexity in engine emissions after-treatment and lower carbon dioxide emission. The combination of oxy-fuel combustion mode with homogeneous charge compression ignition engine can be further optimized by the utilization of direct high temperature and pressure water injection to improve cycle performance. A retrofitted conventional diesel engine coupled with port fuel injection and direct water injection is utilized in this study. A self-designed oxygen and carbon dioxide mixture intake system with flexible oxygen fraction adjustment ability is implemented in the test bench to simulate the adoption of exhaust gas recirculation. Water injection system is directly installed in the combustion chamber with a modified high speed solenoid diesel injector.
Journal Article

Simulation Study of Water Injection Strategy in Improving Cycle Efficiency Based on a Novel Compression Ignition Oxy-Fuel Combustion Engine

2018-04-03
2018-01-0894
The present work discusses a novel oxy-fuel combustion cycle utilized in compression ignition internal combustion engine. The most prominent feature of this cycle is that the air intake is replaced by oxygen; therefore nitric oxide (NOX) emission is eliminated. The enrichment of oxygen leads to higher flame speed and mass fraction consumption rate; on the other hand, the high concentration of oxygen presented during combustion will result in intense pressure rise rate which may cause severe damage to engine hardware. As water injection is already utilized in gasoline engine to control knocking, the utilization of water injection in optimizing oxy-fuel combustion process has been tested in this study. To understand the relationship between water injection strategy and cycle efficiency, computational fluid dynamics (CFD) simulations were carried out. The model was carefully calibrated with the experimental results; the errors were controlled within 3%.
Technical Paper

Effect of Direct Water Injection Timing on Common Rail Diesel Engine Combustion Process and Efficiency Enhancement

2017-10-08
2017-01-2281
The present work aims at optimizing diesel engine combustion efficiency with optimized water injection strategy. The engine had been modified based on a two-cylinder mechanical pump diesel engine into common rail diesel engine with capability of direct water injection. The direct water injection system was designed and manufactured independently. An air-fluid booster was utilized to establish the water injection pressure up to 40MPa. Customized diesel injector was selected to be used as water injector in this study. Water injection strategy was optimized in detail with injection timing around TDC which ranges from 12°CA BTDC to -5°CA BTDC under 10 bar IMEP. The engine efficiency can be improved under selected water injection strategy due to the increment of work fluid in the combustion chamber. Moreover, the nitric oxides emissions show decrement around 10%.
X