Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

A Progress Review on Heating Methods and Influence Factors of Cold Start for Automotive PEMFC System

2020-04-14
2020-01-0852
Fuel cell vehicles (FCV) have become a promising transportation tool because of their high efficiency, fast response and zero-emission. However, the cold start problem is one of the main obstacles to limit the further commercialization of FCV in cold weather countries. Many efforts have made to improve the cold start ability. This review presents comprehensive heating methods and influence factors of the research progress in solving the Proton Exchange Membrane Fuel Cells (PEMFC) system cold start problems with more than 100 patents, papers and reports, which may do some help for PEMFC system cold start from the point of practical utilization. Firstly, recent achievements and goals will be summarized in the introduction part. Then, regarding the heating strategies for the PEMFC system cold start, different heating solutions are classified into self-heating strategies and auxiliary-heating heating depending on their heating sources providing approach.
Technical Paper

Experimental Analysis of - 30°C Cold Start Process for an Automotive PEM Fuel Cell System

2022-03-29
2022-01-0694
Proton exchange membrane fuel cell (PEMFC) system is considered as one of the most popular power sources because of its high energy density, fast dynamic response and zero pollution. However, the start-up at low temperature (e.g. - 30 °C) is still a major challenge for its wide application due to water freezing in Membrane Electrode Assembly (MEA). In this paper, a cold start test process in an environment cabin with auxiliary heat was carried out for a full power automotive PEMFC system, including normal operation, shutdown purge and cold start processes analysis from -30°C. Rated power of this stack is 100kW at the current density of 1.4A/cm2 and relevant maximum output power can reach to 120kW. In order to reduce the damage of high potential to MEA, on-load purge with a current of 30A is conducted to removing extra water in stack for improving cold start ability. Based on corresponding control strategy, cold start was realized successfully within 110s.
Technical Paper

A Progress Review on Gas Purge for Enhancing Cold Start Performance in PEM Fuel Cell

2018-04-03
2018-01-1312
Cold start capability is one of remaining major challenges in realizing PEMFC (Proton Exchange Membrane Fuel Cell) technology for automotive applications. Gas purge is a common and integral shutdown procedure of a PEMFC automotive in subzero temperature. A dryer membrane electrode assembly (MEA) can store more water before it gets saturated and ice starts to penetrate in the open pores of porous media, thus enhancing cold start capability of a PEMFC. Therefore, gas purge is always performed prior to fuel cell shutdown to minimize residual water in a PEMFC. In the hope of improving effectiveness of purge in a PEMFC vehicle, two important purge parameters are evaluated including purge time and energy requirement. In practice, an optimized gas purge protocol should be developed with minimal parasitic energy, short purge duration and no degradation of components. To conclude, the cold start capability and performance can be consolidated by proper design of gas purge strategies.
Technical Paper

Investigation on Cold Start for Proton Exchange Membrane Fuel Cell Stack

2021-04-06
2021-01-0738
Cold start remains a major obstacle to the commercialization of proton exchange membrane fuel cell (PEMFC), however, there are few studies on the cold start characteristics, especially at a complicated stack level. In this study, a novel layer-lumped numerical model with higher computational efficiency is proposed to investigate the cold start behavior of PEMFC stack, in which phase transition, heat transfer and electrochemical reaction are comprehensively considered. Besides, phase transition mechanisms are reconstructed based on the assumption that super-cooled water exists within the cell. With this model, the inconsistency of the stack temperature distribution and output performance is presented, some constant loading voltage strategies are investigated, and a linear variable controlling voltage strategy is developed.
X