Refine Your Search

Search Results

Viewing 1 to 4 of 4
Journal Article

Study on Active Noise Control of Blower in Fuel Cell Vehicle under Transient Conditions

2015-06-15
2015-01-2218
Blower is one of the main noise sources of fuel cell vehicle. In this paper, a narrowband active noise control (ANC) model is established based on adaptive notch filter (ANF) to control the high-frequency noise produced by the blower. Under transient conditions, in order to reduce the frequency mismatch (FM) of ANC for blower, a new Frequency Mismatch Filtered-Error Least Mean Square algorithm (FM-FELMS) is proposed to attenuate blower noise under transient conditions. According to the theoretical analysis and simulation, the proposed algorithm has an excellent noise reduction performance at relatively high blower speed. While for the low speed working condition, the Normalized Least Mean Square (NLMS) algorithm is applied to attenuate noise. The two algorithms could be jointly utilized to control the blower noise actively.
Technical Paper

Acoustic and Aerodynamic Performances of One Phononic Crystal Duct with Periodic Mufflers

2023-04-11
2023-01-0433
The acoustic muffler is one of the practical solutions to reduce the noise in ducts. The acoustic and aerodynamic performances are two critical indices of one muffler for the air intake system of a hydrogen fuel cell electric vehicle (FCEV). In this study, the concept of phononic crystal is applied to design the muffler to obtain superior acoustic performance. One duct with periodic and compact resonator-type mufflers is designed for broadband noise attenuation. The two-dimensional (2D) transfer matrix method and bandgap theory are employed to calculate the transmission loss (TL) and acoustic bandgap. It is numerically and theoretically demonstrated that broadband noise attenuation could be acquired from 500Hz to 3500Hz. Afterwards, the three-dimensional (3D) computational fluid dynamics (CFD) approach is applied to predict the pressure distribution. The results indicate that the proposed hybrid muffler and the phononic crystal duct possess low pressure loss values.
Technical Paper

Modeling and Study on Static Performance of the Double-Top-Foil Air Foil Journal Bearing for Air Compressors in Fuel Cell Vehicles

2023-04-11
2023-01-0870
Air foil bearings are gradually applied in air compressors in fuel cell vehicles for the advantages of high speed, oil-free and non-contact. Advanced air foil bearings with different structures are used to improve the performance of air compressor. Accurate modeling of the complex structures in air foil bearings has become a research hotspot in recent years. This paper presents a theoretical model for a double-top-foil air foil journal bearing (DAFJB) for centrifugal air compressors used in fuel cell vehicles. The foil structure is modeled by finite element method (FEM) using shell elements. Coulomb law and penalty function method are applied to model the tangential and normal behavior of the contact areas. The local contact between the middle top foil and the bump foil, the bump foil and the bearing sleeve are modeled using node-to-segment contact method. The large-area contact behavior between two layers of top foils is modeled by simplified surface-to-surface contact scheme.
Technical Paper

Transfer Path Analysis and Low-Frequency Vibration Reduction by Locally Resonant Phononic Crystal

2019-04-02
2019-01-0786
The motor has vibration characteristics of order and multi-band in the frequency domain, which is different from the internal combustion engine when it is used as the vehicle’s drive. These characteristics cannot be briefly attenuated by general methods, but make the phononic crystal (PC) an ideal solution to eliminate the vibration transmission of the motor, because the concentrated vibration peak can easily be blocked by the bandgap. In this paper, one dimensional locally resonant phononic crystal (LRPC) which has low-frequency bandgaps are arranged on the automotive subframe to absorbing vibration. The partial coherence analysis is used to analyze the transfer characteristic of vibration on the subframe. Then, 6 main paths are selected from the 18 vibration transmission paths, based on its high ratio of partial coherence coefficient in a certain frequency, and the arranged position, the spring stiffness and the resonator’s mass of the LRPCs are chosen based on this result.
X