Refine Your Search

Topic

Search Results

Journal Article

Analysis of Friction Induced Stability, Bifurcation, Chaos, Stick-slip Vibration and their Impacts on Wiping Effect of Automotive Wiper System

2014-04-01
2014-01-0021
A 2 DOF nonlinear dynamic model of the automotive wiper system is established. Complex eigenvalues are calculated based on the complex modal theory, and the system stability as well as its dependence on wiping velocity is analyzed. Bifurcation characteristics of frictional self-excited vibration and stick-slip vibration relative to wiping velocity are studied through numerical analysis. Research of nonlinear vibration characteristics under various wiping velocities is conducted by means of phase trajectories, Poincaré map and frequency spectrum. The pervasive stick-slip vibration during wiping is confirmed, and its temporal and spatial distributions are analyzed by way of time history and contour map. Duty ratio of stick vibration and statistics of scraping residual are introduced as quantitative indexes for wiping effect evaluation. Results indicate that the negative slop of frictional-velocity characteristic is the root cause of system instability.
Technical Paper

Characteristics of Auto-Ignition for Lubricants and Lubricant/Gasoline Based on an Innovative Single Droplet Test System

2020-04-14
2020-01-1428
Due to the advantages of low weight, low emissions and good fuel economy, downsized turbocharged gasoline direct injection (GDI) engines are widely-applied nowadays. However, Low-Speed Pre-Ignition (LSPI) phenomenon observed in these engines restricts their improvement of performance. Some researchers have shown that auto-ignition of lubricant in the combustion chamber has a great effect on the LSPI frequency. To study the auto-ignition characteristics of lubricant, an innovative single droplet auto-ignition test system for lubricant and its mixture is designed and developed, with better accuracy and effectiveness. The experiments are carried out by hanging lubricant droplets on the thermocouple node under active thermo-atmosphere provided by a small “Dibble burner”. The auto-ignition process of lubricant droplets is recorded by a high-speed camera.
Journal Article

Study of the Combustion Characteristics of a HCCI Engine Coupled with Oxy-Fuel Combustion Mode

2017-03-28
2017-01-0649
The present work proposed to implement oxy-fuel combustion mode into a homogeneous charge compression ignition engine to reduce complexity in engine emissions after-treatment and lower carbon dioxide emission. The combination of oxy-fuel combustion mode with homogeneous charge compression ignition engine can be further optimized by the utilization of direct high temperature and pressure water injection to improve cycle performance. A retrofitted conventional diesel engine coupled with port fuel injection and direct water injection is utilized in this study. A self-designed oxygen and carbon dioxide mixture intake system with flexible oxygen fraction adjustment ability is implemented in the test bench to simulate the adoption of exhaust gas recirculation. Water injection system is directly installed in the combustion chamber with a modified high speed solenoid diesel injector.
Journal Article

Investigation of Combustion Optimization Control Strategy for Stable Operation of Linear Internal Combustion Engine-Linear Generator Integrated System

2016-06-17
2016-01-9144
The linear internal combustion engine-linear generator integrated system (LICELGIS) is an innovative structure as a range-extender for the hybrid vehicles, which contains two opposed free piston engines and one linear generator between them. The LICELGIS is a promising power package due to its high power density and multi-fuel flexibility. In the combustion process of linear engines, the top dead center (TDC) position is not stable in different cycles, which significantly affects system operations. Otherwise, pistons move away from the TDC with high-speed because of the tremendous explosive force, which incurs the short residence time of pistons around the TDC and rapid decrease of in-cylinder temperature, pressure and the combustion efficiency. In order to address this problem, a scientific simulation model which includes dynamic and thermodynamic models, is established and a combustion optimization control strategy is proposed.
Journal Article

Lubrication Analysis of Floating Ring Bearings Considering Floating Ring Heat Transfer

2016-04-05
2016-01-0485
Turbochargers improve performance in internal combustion engines. Due to low production costs, TC assemblies are supported on floating ring bearings. In current lubrication analysis of floating ring bearing, inner and outer oil film are usually supposed to be adiabatic. The heat generated by frictional power is carried out by the lubricant flow. In reality, under real operating conditions, there existed heat transfer between the inner and outer film. In this paper, the lubrication performance of floating ring bearing when considering heat transfer between inner film and outer film is studied. The lubrication model of the floating ring is established and the heat transferred through the ring between the inner and outer film is calculated. The calculation results show that heat flow between the inner and outer film under different outer film eccentricity ratio and rotate ratio has a large difference.
Journal Article

Numerical Models for PEMFC Cold Start: A Review

2017-03-28
2017-01-1182
Startup from subzero temperature is one of the major challenges for polymer electrolyte membrane fuel cell (PEMFC) to realize commercialization. Below the freezing point (0°C), water will freeze easily, which blocks the reactant gases into the reaction sites, thus leading to the start failure and material degradation. Therefore, for PEMFC in vehicle application, finding suitable ways to reach successful startup from subfreezing environment is a prerequisite. As it’s difficult and complex for experimental studies to measure the internal quantities, mathematical models are the effective ways to study the detailed transport process and physical phenomenon, which make it possible to achieve detailed prediction of the inner life of the cell. However, review papers only on cold start numerical models are not available. In this study, an extensive review on cold start models is summarized featuring the states and phase changes of water, heat and mass transfer.
Journal Article

The Influences of the Subframe Flexibility on Handling and Stability Simulation When Using ADAMS/Car

2016-04-05
2016-01-1637
To analyze the K&C (kinematics and compliance), handling and stability performance of the vehicle chassis, some simulations are usually performed using a multi-body dynamics software named ADAMS. This software introduces assumptions that simplify the components of the suspension as rigid bodies. However, these assumptions weaken the accuracy of the simulation of ADAMS. Therefore the use of flexible bodies in K&C and handling and stability simulation in ADAMS is needed to conduct more precise suspension system designs. This paper mainly analyses the influences of the subframe flexibility on handling and stability simulation in ADAMS/Car. Two complete vehicle models are built using ADAMS/Car and Hypermesh. The only difference between the two models is the subframe of the front McPherson suspension. One of the subframes is simplified as a rigid body. The other one is a flexible body built using the MNF file from Hypermesh.
Journal Article

Anti-Lock Braking System Control Design on An Integrated-Electro-Hydraulic Braking System

2017-03-28
2017-01-1578
Two control strategies, safety preferred control and master cylinder oscillation control, were designed for anti-lock braking on a novel integrated-electro-hydraulic braking system (I-EHB) which has only four solenoid valves in its innovative hydraulic control unit (HCU) instead of eight in a traditional one. The main idea of safety preferred control is to reduce the hydraulic pressure provided by the motor in the master cylinder whenever a wheel tends to be locking even if some of the other wheels may need more braking torque. In contrast, regarding master cylinder oscillation control, a sinusoidal signal is given to the motor making the hydraulic pressure in the master cylinder oscillate in certain frequency and amplitude. Hardware-in-the-loop simulations were conducted to verify the effectiveness of the two control strategies mentioned above and to evaluate them.
Technical Paper

Effect of Piston Crevice on Transient HC Emissions of First Firing Cycle at Cold Start on LPG SI Engine

2007-10-29
2007-01-4015
By changing the top-land radial clearance, this paper presents the effect of the piston crevice on the transient HC emissions of the first firing cycle at cold start on an LPG SI Engine. A fast-response flame ionization detector (FFID) was employed to measure transient HC emissions of the first firing cycle. At the same time, the transient cylinder pressure and instantaneous crankshaft speed of the engine were measured and recorded. The results show that increasing 50% crevice volume leads to 25% increase of HC emissions in the lean region and 18% increase of HC emissions in the rich region, however, the 50% increase of crevice volume contributes to 32% decease of HC emissions in the stable combustion region. For LPG SI engine, the HC emissions of the first firing cycle during cold start are relatively low in a wide range of the excess air ratio.
Technical Paper

A Study of Crevice HC Mechanism Based on the Transient HC Test Data and the Double Zone Combustion Model

2008-06-23
2008-01-1652
The effectiveness of after-treatment systems depends on the exhaust gas temperature, which is low during cold-start. As a result, Euro III, Euro IV and FTP75 require that the emissions tests include exhaust from the beginning of cold start. It is proved that 50%∼80% of HC and CO emissions are emitted during the cold start and the amount of unburned fuel from the crevices during starting is much higher than that under warmed engine conditions. The piston crevices is the most part of combustion chamber crevices, and results of mathematical simulations show that the piston crevice contribution to HC emissions is expected to increase during cold engine operation. Based on the transient HC test data and the double zone combustion model, this paper presents the study of the crevice HC Mechanism of the first firing cycle at cold start on an LPG SI Engine. A fast-response flame ionization detector (FFID) was employed to measure transient HC emissions of the first firing cycle.
Technical Paper

Study on Improving the Fuel Economy of the Engine on EP Energy-Saving Vehicle

2008-06-23
2008-01-1780
“Soichiro Honda Cup, Honda Econo-Power Competition”, is an annual international energy-saving competition which is hosted by Honda Motor Co., Ltd. Till now it has been held 27 sessions. The aims of the EP project are: promoting the development of environmental protection, making full use of limit earth resources, challenging the fuel consumption limitation of vehicle. Tongji University's students' team has participated in the competition for seven consecutive times. In order to minimize the fuel consumption of the EP energy-saving vehicle, this paper focuses on the technical methods of improving the fuel economy of the engine. Firstly, the optimization of the carburetor. Secondly, for the purpose of improving combustion efficiency, researches on dual spark plug and compression ratio are done.
Technical Paper

Analysis on Fatigue Load and Life about the Frame of a Low-Speed Electric Vehicle Based on Multi-Body Dynamics

2017-03-28
2017-01-0334
The frame of a low-speed electric vehicle was treated as the research object in the paper. The fatigue load of the frame was analyzed with multi-body dynamics method and the fatigue life of frame was analyzed with the nominal stress method. Firstly, the multi-body dynamics model of the vehicle was established and the multi-body dynamics simulation was carried out to simulate the condition where the vehicle used to travel. The fatigue load history of the frame was obtained from the simulation. Secondly, the amplitude-frequency characteristic of the fatigue load was analyzed. The frequency of the fatigue load mainly focused on 0~20HZ from the analysis. Thirdly, the modal of frame was analyzed. As the frequency of the fatigue load was less than the natural frequency of the frame, the quasi-static method was selected to calculate the stress history of the frame. Next, the fatigue life of the frame was analyzed based on S-N curve.
Technical Paper

The Study on Fatigue Test of Cab Assembly Based on 4-Channel Road Simulation Bench

2017-03-28
2017-01-0328
The multi-body dynamics simulation and physical iteration were carried out based on the 4-channel road simulation bench, the solution of fatigue test bench which was suitable for cab with frame and suspension was designed. Large load and displacement above the suspension can be loaded on the test bench, and the same weak position of cab exposed on the road test can be assessed well on the fatigue test bench. The effectiveness of the bench test solution was verified though comparative study. And it has important reference for the same type of cab assembly with suspension in the fatigue bench test. According to the durability specifications of cab assembly, a multi-body dynamics model with a satisfactory accuracy was built. And the fixture check and virtual iteration analysis were used to verify the effectiveness of the solution. According to the road load signal analysis and multi-body dynamics analysis results, the test bench with linear guide and spherical joint was built.
Technical Paper

Multi-Body Dynamic Simulation and Fatigue Analysis of the Unique Crank - train for a Creative Two-stoke Opposed Piston Diesel Engine

2016-10-17
2016-01-2332
For an innovative opposed-piston diesel engine (OPE) with two-stroke operation mode, it attracted even more attentions than ever in some developed countries all around the world, attributed to the unique advantages of higher power density that conducive to downsize IC engine, as well as the potential of further reducing fuel consumption for outstanding thermal efficiency. To achieve fast practical application and ensure the feasibility in concept design stage, the performance characteristic of OPE crankshaft system was investigated, and thus a theoretical analytic model of crankshaft system in an OP2S (Opposed-piston two stroke) engine was established. The effects of all structural design variables on averaged output torque of OPE crankshaft were analyzed, respectively. It was found that the initial crank angle difference between inner crank web and outer crank web was considered as a most critical contributor to boost the averaged torque output than other design variables.
Technical Paper

Numerical Study of Unsteady Performance of a Double-entry Turbocharger Turbine under Different A/R Value Conditions

2016-04-05
2016-01-1031
Turbocharging industry mainly employ steady method in the design and development process in present. However, the unsteady method is becoming more important for the exploration of the advanced turbocharging technique. This paper discusses the influences of A/R value on unsteady performances of a double-entry turbocharger turbine. In the study, numerical simulation has been done by ANSYS CFX software, The turbine have three kinds of A/R values that change in order, and the three schemes has the same unsteady flow boundary conditions. The simulation results show that the unsteady turbine performances have the characteristics loops representing filling and emptying effects. And the unsteady performances of the three schemes have some regular differences. The mean unsteady turbine efficiency decreases with increasing A/R value in the involved range, but the overall entropy of the turbine in a pulse period has no significant differences.
Technical Paper

Finite Element Analysis on Multi-Layer-Steel Cylinder Head Gaskets

2016-04-05
2016-01-1381
Sealing system is an important subsystem of modern high-performance engine. Sealing system reliability directly affects the engine operating conditions. Cylinder head gaskets(CHG) sealing system is of the most importance to the engine sealing system, which is not only responsible for sealing chamber, the cooling fluid and lubricating oil passage, for preventing gas leakage, water leakage and oil leakage, but also responsible for force transferring between cylinder head and cylinder body. Basing on nonlinear solution method, the sealing performance of multi-layer-steel cylinder head gaskets to a gasoline engine is studied with the finite element software ABAQUS. The deformations of the cylinder liners and engine block are also considered.
Technical Paper

An Integrated-Electro-Hydraulic Brake System for Active Safety

2016-04-05
2016-01-1640
An integrated-electro-hydraulic brake system (I-EHB) is presented to fulfill the requirements of active safety. Because I-EHB can control the brake pressure accurately and fast. Furthermore I-EHB is a decoupled system, so it could make the maximum regenerative braking while offers the same brake pedal feeling and also good for ADAS and unmanned driving application. Based on the analysis of current electrohydraulic brake systems, regulation requirements and the requirements for brake system, the operating mode requirements of I-EHB are formed. Furthermore, system topological structure and a conceptual design are proposed. After the selection of key components, the parameter design is accomplished by modeling the system. According to the above-mentioned design method, an I-EHB prototype and test rig is made. Through the test rig, characteristics of the system are tested. Results show that this I-EHB system responded rapidly.
Technical Paper

Hydraulic Control of Integrated Electronic Hydraulic Brake System based on Command Feed-Forward

2016-04-05
2016-01-1658
With the development of vehicle electrification, electronic hydraulic brake system is gradually applied. Many companies have introduced products related to integrated electronic hydraulic brake system (I-EHB). In this paper, an I-EHB system is introduced, which uses the motor to drive the reduction mechanism as a power source for braking. The reduction mechanism is composed of a turbine, a worm, a gear and a rack. A control method based on command feed-forward is proposed to improve the hydraulic pressure control of I-EHB. Based on previous research, we simplify the system to first order system, and the theoretical design of the command feed-forward compensator is carried out. The feed-forward controller is applied, including the velocity feed-forward and the acceleration feed-forward, to improve the response speed and tracking effect of the system.
Technical Paper

The Investigation of Self-Balanced Property and Vibration on the Particular Crankshaft System for an Opposed Piston Engine

2016-06-15
2016-01-1768
For an in-line diesel engine with four cylinder operating in four-stroke mode, the second-order reciprocating inertia forces generally cannot be well balanced with direct approach. The unbalanced second-order inertia forces are the main reason to cause vibration and noise in a diesel engine within low frequency range. The more superior tone quality for modern diesel engine has been expected even for bus application all the time, and there are tougher requirements for truck noise in developed countries, i.e. in Europe and USA. In present research a unique crankshaft system configuration was proposed, which including opposed piston, inner and outer connecting rod, and crankshaft but running in two-stroke mode, to eliminate the second-order inertia force considerably rather than by adding an extra balance shaft mechanism.
Technical Paper

Vehicle Stability Criterion Research Based on Phase Plane Method

2017-03-28
2017-01-1560
In this paper, a novel method is proposed to establish the vehicle yaw stability criterion based on the sideslip angle-yaw rate (β-r) phase plane method. First, nonlinear two degrees of freedom vehicle analysis model is established by adopting the Magic Formula of nonlinear tire model. Then, according to the model in the Matlab/Simulink environment, the β-r phase plane is gained. Emphatically, the effects of different driving conditions (front wheels steering angle, road adhesion coefficient and speed) on the stability boundaries of the phase plane are analyzed. Through a large number of simulation analysis, results show that there are two types of phase plane: curve stability region and diamond stability region, and the judgment method of the vehicle stability domain type under different driving conditions is solved.
X