Refine Your Search

Topic

Affiliation

Search Results

Journal Article

Adhesion Control Method Based on Fuzzy Logic Control for Four-Wheel Driven Electric Vehicle

2010-04-12
2010-01-0109
The adhesion control is the basic technology of active safety for the four-wheel driven EV. In this paper, a novel adhesion control method based on fuzzy logic control is proposed. The control system can maximize the adhesion force without road condition information and vehicle speed signal. Also, the regulation torque to prevent wheel slip is smooth and the vehicle driving comfort is greatly improved. For implementation, only the rotating speed of the driving wheel and the motor driving torque signals are needed, while the derived information of the wheel acceleration and the skid status are used. The simulation and road test results have shown that the adhesion control method is effective for preventing slip and lock on the slippery road condition.
Journal Article

Combination of Test with Simulation Analysis of Brake Groan Phenomenon

2014-04-01
2014-01-0869
During a car launch, the driving torque from driveline acts on brake disk, and may lead the pad to slip against the disk. Especially with slow brake pedal release, there is still brake torque applies on the disk, which will retard the rotation of disk, and under certain conditions, the disk and pad may stick again, so the reciprocated stick and slip can induce the noise and vibration, which can be transmitted to a passenger by both tactile and aural paths, this phenomenon is defined as brake groan. In this paper, we propose a nonlinear dynamics model of brake for bidirectional, and with 7 Degrees of Freedom (DOFs), and phase locus and Lyapunov Second Method are utilized to study the mechanism of groan. Time-frequency analysis method then is adopted to analyze the simulation results, meanwhile a test car is operated under corresponding conditions, and the test signals are sampled and then processed to acquire the features.
Journal Article

Fatigue Behavior of Aluminum Alloys under Multiaxial Loading

2014-04-01
2014-01-0972
Fatigue behavior of aluminum alloys under multiaxial loading was investigated with both cast aluminum A356-T6 and wrought alloy 6063-T6. The dominant multiaxial fatigue crack preferentially nucleates from flaws like porosity and oxide films located near the free surface of the material. In the absence of the flaws, the cracking/debonding of the second phase particles dominates the crack initiation and propagation. The number of cracked/debonded particles increases with the number of cycles, but the damage rate depends on loading paths. Among various loading paths studied, the circle loading path shows the shortest fatigue life due to the development of complex dislocation substructures and severe stress concentration near grain/cell boundaries and second phase particles.
Journal Article

Design and Thermal Analysis of a Passive Thermal Management System Using Composite Phase Change Material for Rectangular Power Batteries

2015-04-14
2015-01-0254
A passive thermal management system (TMS) using composite phase change material (PCM) for large-capacity, rectangular lithium-ion batteries is designed. A battery module consisting of six Li-ion cells connected in series was investigated as a basic unit. The passive TMS for the module has three configurations according to the contact area between cells and the composite PCM, i.e., surrounding, front-contacted and side-contacted schemes. Firstly, heat generation rate of the battery cell was calculated using the Bernardi equation based on experimentally measured heat source terms (i.e. the internal resistance and the entropy coefficient). Physical and thermal properties such as density, phase change temperature, latent heat and thermal conductivity of the composite PCM were also obtained by experimental methods. Thereafter, thermal response of the battery modules with the three TMS configurations was simulated using 3D finite element analysis (FEA) modeling in ANSYS Fluent.
Technical Paper

Optimization of Electric Vacuum Pump Mount to Improve Sound Quality of Electric Vehicle

2020-04-14
2020-01-1259
The noise and vibration of electric vacuum pump (EVP) become a major problem for electric vehicles when the vehicle is stationary. This paper aims at the EVP’s abnormal noise of an electric vehicle when stationary. Driver’s right ear (DRE) noise was tested and spectrogram analysis was carried out to identify the noise sources. In order to attenuate this kind of abnormal noise, a new EVP rubber mount with a segmented structure was introduced, which optimized the transfer path of vibration. Then dynamic stiffness and fatigue life of the EVP mount with different rubber hardness were calculated through finite element analysis (FEA) approach. Bench tests of fatigue life and DRE noise were performed to validate the FEA results. Test data of the sample mount shows that sound pressure level of DRE was dramatically attenuated and thus passengers’ ride comfort was enhanced.
Journal Article

A Novel ZSB-PAM Power Regulation Method Applied in Wireless Charging System for Vehicular Power Batteries

2015-04-14
2015-01-1194
Wireless charging system for vehicular power batteries is becoming more and more popular. As one of important issues, charging power regulation is indispensable for online control, especially when the distance or angle between chassis and ground changes. This paper proposes a novel power regulation method named Z-Source-Based Pulse-Amplitude-Modulation (ZSB-PAM), which has not been mentioned in the literatures yet. The ZSB-PAM employs a unique impedance network (two pairs of inductors and capacitors connected in X shape) to couple the cascaded H Bridge to the power source. By controlling the shoot-through state of H bridge, the input voltage to H bridge can be boosted, thus the transmitter current can be adjusted, and hence, charging current and power for batteries. A LCL-LCL resonant topology is adopted as the main transfer energy carrier, for it can work with a unity power factor and have the current source characteristic which is suitable for battery charging.
Journal Article

Uncertainty Optimization of Thin-walled Beam Crashworthiness Based on Approximate Model with Step Encryption Technology

2016-04-05
2016-01-0404
Crashworthiness is one of the most important performances of vehicles, and the front rails are the main crash energy absorption parts during the frontal crashing process. In this paper, the front rail was simplified to a thin-walled beam with a cross section of single-hat which was made of steel and aluminum. And the two boards of it were connected by riveting without rivets. In order to optimize its crashworthiness, the thickness (t), radius (R) and the rivet spacing (d) were selected as three design variables, and its specific energy absorption was the objective while the average impact force was the constraint. Considering the error of manufacturing and measurements, the parameters σs and Et of the steel were selected as the uncertainty variables to improve the design reliability. The algorithm IP-GA and the approximate model-RBF (Radial Basis Function) were applied in this nonlinear uncertainty optimization.
Journal Article

Programmed Load Spectrum for Fatigue Bench Test of a Vehicle Body

2016-04-05
2016-01-0387
A compiled method of the programmed load spectrum, which can simplify and accelerate the fatigue bench test of a car body, is proposed and its effectiveness is checked by the fatigue simulation. By using the multi-body dynamics model with a satisfactory accuracy, the virtual iteration is applied to cascade body loads from the wheel hubs. Based on the rain-flow counting method and statistics theory, the distributions of the body loads are analyzed, and then the programmed load spectrum is compiled and simplified. Through comparative study, the simulation results of random and programmed load spectrum are found to agree well with each other in terms of the damage distribution and fatigue life, which demonstrates the effectiveness of the presented method.
Journal Article

Experimental Study of the Plasticity Responses of TRIP780 Steel Subjected to Strain-Path Changes

2016-04-05
2016-01-0363
The work-hardening response of TRIP780 steel subjected to strain-path changes was investigated using two-stage tension experiments. Large specimens were prestrained and then sub-sized samples were subjected to tension along various directions. The influence of strain-path changes on flow stress and work hardening performance was discussed in detail. The specific plastic work was calculated to compare the kinematic hardening behaviour after strain-path changes. The results showed that transient hardening was observed for TRIP780 sheets subjected to orthogonal strain-path change. The strain-hardening exponent (n-value) was influenced by prestraining levels and the strain path. The n-value exhibited a greater decrease under an orthogonal strain-path change. Prestraining can delay the onset of high work hardenability of TRIP steels. It is meaningful for the safety design of vehicles.
Journal Article

Longitudinal Vibration Analysis of Electric Wheel System in Starting Condition

2017-03-28
2017-01-1126
Due to coupling of in-wheel motor and wheel/tire, the electric wheel system of in-wheel motor driven vehicle is different from tire suspension system of internal combustion engine vehicle both in the excitation source and structural dynamics. Therefore emerging dynamic issues of electric wheel arouse attention. Longitudinal vibration problem of electric wheel system in starting condition is studied in this paper. Vector control system of permanent magnet synchronous hub motor considering dead-time effect of the inverter is primarily built. Then coupled longitudinal-torsional vibration model of electric wheel system is established based on rigid ring model and dynamic tire/road interface. Inherent characteristics of this model are further analyzed. The vibration responses of electric wheel system are simulated by combining electromagnetic torque and the vibration model. The results indicate that abrupt changes of driving torque will cause transient vibration of electric wheel system.
Technical Paper

Impact Simulation and Structural Optimization of a Vehicle CFRP Engine Hood in terms of Pedestrian Safety

2020-04-14
2020-01-0626
With the rapidly developing automotive industry and stricter environmental protection laws and regulations, lightweight materials, advanced manufacturing processes and structural optimization methods are widely used in body design. Therefore, in order to evaluate and improve the pedestrian protection during a collision, this paper presents an impact simulation modeling and structural optimization method for a sport utility vehicle engine hood made of carbon fiber reinforced plastic (CFRP). Head injury criterion (HIC) was used to evaluate the performance of the hood in this regard. The inner panel and the outer panel of CFRP hood were discretized by shell elements in LS_DYNA. The Mat54-55 card was used to define the mechanical properties of the CFRP hood. In order to reduce the computational costs, just the parts contacted with the hood were modeled. The simulations were done in the prescribed 30 impact points.
Technical Paper

Recent Progress on In-Situ Monitoring and Mechanism Study of Battery Thermal Runaway Process

2020-04-14
2020-01-0861
Lithium-ion batteries (LIBs) with relatively high energy, power density and eco-friendly characteristic are considered as a vital energy source in consumer market of portable electronics and transportation sector especially in electric vehicles (EVs). To meet the higher capacity requirements, the nickel-rich LIBs with higher capacity has been used as the commercial power batteries. However, the battery with higher energy density is more destructive, which could result in thermal runaway accidents and make the battery safety issues become more and more prominent. Thermal runaway of LIBs is one of the key scientific problems in safety issues. Until now, the inducement of thermal runaway process is complicated which perplex researchers and industry a lot. On the one hand, the internal mechanism about thermal runaway should be deeply studied. On the other hand, in-situ monitoring should be developed to supply the mechanism study and early warning.
Technical Paper

Research on Fast Filling Strategy of Large Capacity On-Board Hydrogen Storage Tank for Highway Passenger Cars

2020-04-14
2020-01-0855
In order to study the fast filling problem of large-capacity on-board hydrogen storage tank for highway passenger cars, a computational fluid dynamics (CFD) simulation model of 134L large-capacity hydrogen storage tank was established. By simulating different pre-cooling temperatures and mass flow rates, the temperature distribution and thermal transmission in the tank were observed. Due to the large ratio of length to diameter of the hydrogen tank, the temperature distribution is extremely uneven during the whole filling process, and the high temperature area is mainly concentrated in the tank tail. And the heat transfer between the gas and the tank wall is not obvious under the low and constant mass flow rate. The temperature rise process during the whole filling process under different mass flow conditions was simulated to satisfy the highest safe temperature limit.
Technical Paper

A Progress Review on Heating Methods and Influence Factors of Cold Start for Automotive PEMFC System

2020-04-14
2020-01-0852
Fuel cell vehicles (FCV) have become a promising transportation tool because of their high efficiency, fast response and zero-emission. However, the cold start problem is one of the main obstacles to limit the further commercialization of FCV in cold weather countries. Many efforts have made to improve the cold start ability. This review presents comprehensive heating methods and influence factors of the research progress in solving the Proton Exchange Membrane Fuel Cells (PEMFC) system cold start problems with more than 100 patents, papers and reports, which may do some help for PEMFC system cold start from the point of practical utilization. Firstly, recent achievements and goals will be summarized in the introduction part. Then, regarding the heating strategies for the PEMFC system cold start, different heating solutions are classified into self-heating strategies and auxiliary-heating heating depending on their heating sources providing approach.
Technical Paper

Optimized Control of Dynamical Engine-Start Process in a Hybrid Electric Vehicle

2020-04-14
2020-01-0268
Engine start while driving is one of the most typical and frequent work conditions for hybrid vehicles. Engine start has very significant impact on the driving comfort. Engine start, especially a dynamical engine start, have high control requirements regarding control time, torque output and riding comfort. In some hybrid transmissions such as P2, engine is cranked and synchronized through wet clutch slipping. Because clutch pressure control has time-varying delay and estimation precision of engine torque by ECU (Engine Control Unit) is poor, conventional PID controller is unable to meet the high requirements of control quality. A new control algorithm is proposed in this paper to cope with all these challenges. The new control algorithm is based on LADRC (Linear Active Disturbance Rejection Controller) and is improved through combination with Smith predictor and Adaline network. LADRC is adopted to reduce negative effects of poor precision of engine torque.
Technical Paper

Starting Process Control of a 2-Cylinder PFI Gasoline Engine for Range Extender

2020-04-14
2020-01-0315
With the increasing worldwide concern on environmental pollution, battery electrical vehicles (BEV) have attracted a lot attention. However, it still couldn’t satisfy the market requirements because of the low battery power density, high cost and long charging time. The range-extended electrical vehicle (REEV) got more attention because it could avoid the mileage anxiety of the BEVs with lower cost and potentially higher efficiency. When internal combustion engine (ICE) works as the power source of range extender (RE) for REEV, its NVH, emissions in starting process need to be optimized. In this paper, a 2-cylinder PFI gasoline engine and a permanent magnet synchronous motor (PMSM) are coaxially connected. Meanwhile, batteries and load systems were equipped. The RE co-control system was developed based on Compact RIO (Compact Reconfigurable IO), Labview and motor control unit (MCU).
Technical Paper

Investigation of the Operating Conditions on the Water and Thermal Management for a Polymer Electrolyte Membrane Fuel Cell by One-Dimensional Model

2020-04-14
2020-01-0856
Water and thermal management is an essential issue that influences performance and durability of a polymer electrolyte membrane fuel cell (PEMFC). Water content in membrane decides its ionic conductivity and membrane swelling favors the ionic conductivity, resulting in decreases in the membrane’s ohmic resistance and improvement in the output voltage. However, if excessive liquid water can’t be removed out of cell quickly, it will fill in the pores of catalyst layer (CL) and gas diffusion layer (GDL) then flooding may occur. It is essential to keep the water content in membrane at a proper level. In this work, a transient isothermal one-dimensional model is developed to investigate effects of the relative humidity of inlet gas and cell temperature on performance of a PEMFC.
Technical Paper

Simulation and Parametric Analysis of Battery Thermal Management System Using Phase Change Material

2020-04-14
2020-01-0866
The thermophysical parameters and amount of composite phase change materials (PCMs) have decisive influence on the thermal control effects of thermal management systems (TMSs). At the same time, the various thermophysical parameters of the composite PCM are interrelated. For example, increasing the thermal conductivity is bound to mean a decrease in the latent heat of phase change, so a balance needs to be achieved between these parameters. In this paper, a prismatic LiFePO4 battery cell cooled by composite PCM is comprehensively analyzed by changing the phase change temperature, thermal conductivity and amount of composite PCM. The influence of the composite PCM parameters on the cooling and temperature homogenization effect of the TMS is analyzed. which can give useful guide to the preparation of composite PCMs and design of the heat transfer enhancement methods for TMSs.
Technical Paper

Optimization of the Finite Hybrid Piezoelectric Phononic Crystal Beam for the Low-Frequency Vibration Attenuation

2020-04-14
2020-01-0913
This paper presents a theoretical study of a finite hybrid piezoelectric phononic crystal (PC) beam with shunting circuits. The vibration transmissibility method (TM) is developed for the finite system. The uniform and non-uniform configurations of the resonators, piezoelectric patches and shunting circuits are respectively considered. The properties of the vibration attenuation of the hybrid PC beam undergoing bending vibration are investigated and quantified. It is shown that the proper relaxation of the periodicity of the PC is conducive to forming a broad vibration attenuation region. The hybrid piezoelectric PC combines the purely mechanical PC with the piezoelectric PC and provides more tunable mechanisms for the target band-gap. Taking the structural and circuit parameters into account, the design of experiments (DOE) method and the multi-objective genetic optimization method are employed to improve the vibration attenuation and meet the lightweight demand of the attachments.
Technical Paper

A Road Load Data Processing Method for Transmission Durability Optimization Development

2020-04-14
2020-01-1062
With increasing pressure from environment problem for reduction in CO2 emissions and stricter fuel targets from road vehicles, new transmission technologies are gaining more attention in different main market. To get suitable road load data for transmission durability development is becoming increasingly important and can shorten the development time of new transmission. This paper presents the procedure and methods of road load data development for durability design of transmission product and optimization based on the real road data measurement, statistical characteristics evaluation and fatigue damage equivalency. Apply this road load data method procedure on 3 type of vehicle which represent conventional vehicle, BEV and HEV.
X