Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Dynamic Durability Prediction of Fuel Cells Using Long Short-Term Memory Neural Network

2022-03-29
2022-01-0687
Durability performance prediction is a critical issue in fuel cell research. During the demonstration operation of fuel cell commercial vehicles in China, this issue has attracted more attention. In this article, the long short-term memory neural network (LSTMNN), which is an improved recurrent neural network (RNN), and the demonstration operation data are used to establish the prediction model to predict the durability performance of the fuel cell stack. Then, a model based on a back-propagation neural network (BPNN) is established to be a control group. The demonstration operation data is divided into training group and validation group. The former is used to train the prediction model, and the latter is used to verify the validity and accuracy of the prediction model. The outputs of the prediction model, as the durability performance evaluation indexes of the fuel cell, are the polarization curve (current-voltage curve) and the voltage decay curve (time-voltage curve).
Technical Paper

Performance Prediction of Proton Exchange Membrane Hydrogen Fuel Cells Using the GRU Model

2022-03-29
2022-01-0692
In recent years, fuel cell vehicles have attracted more attention since the advantages of no environmental pollution and high energy density, however, the cost and durability of fuel cells have been important factors limiting the rapid development of fuel cell vehicles. How to quickly predict the life of fuel cells has always been the emphasis and focus of the industry. Therefore, this paper mainly focuses on two sets of proton exchange membrane hydrogen fuel cell durability test data. In this paper, we establish a fuel cell life prediction model to carry out product prediction research, using Gated Recurrent Unit Neural Network (GRU-NN)—a variant of “Recurrent Neural Networks” (RNN). This article first divides the two sets of fuel cell durability test data into a training group and a verification group and trains the established neural network model with the test data of the training group.
Journal Article

A Data Driven Fuel Cell Life-Prediction Model for a Fuel Cell Electric City Bus

2021-04-06
2021-01-0739
Life prediction is a major focus for a commercial fuel cell stack, especially applied in fuel cell electric vehicles (FCEV). This paper proposes a data driven fuel cell lifetime prediction model using particle swarm optimized back-propagation neural network (PSO-BPNN). For the prediction model PSO-BP, PSO algorithm is used to determine the optimal hyper parameters of BP neural network. In this paper, total voltage of fuel cell stack is employed to represent the health index of fuel cell. Then the proposed prediction model is validated by the aging data from PEMFC stack in FCEV at the actual road condition. The experimental results indicate that PSO-BP model can predict the voltage degradation of PEMFC stack at actual road condition precisely and has a higher prediction accuracy than BP model.
X