Refine Your Search

Topic

Search Results

Technical Paper

Influence of Distributing Channel Configuration and Geometric Parameters on Flow Uniformity in Straight Flow-Field of PEM Fuel Cell

2020-04-14
2020-01-1173
Gas distribution of proton exchange membrane fuel cells (PEMFCs) is mainly decided by flow field of bipolar plate. The improper design of distributing channel, nonuniform gas flow distribution and current density distribution among different straight channels are the leading factors that could tremendously undermine the performance and life expectancy of the cell. However, there is lack of research focusing on distributing channel in straight-parallel flow field. In this work, a three-dimensional numerical model of PEMFC cathode flow field is developed with CFD method to investigate the effects of configuration type and width of the distributing channel on pressure distribution in distributing channel and on reactant flow distribution, pressure drop and concentration distribution in multiple straight channel. Effects of electrochemical reaction and formation of water on the flow distribution are taken into consideration.
Technical Paper

Study on the Performance-Determining Factors of Commercially Available MEA in PEMFCs

2020-04-14
2020-01-1171
Proton exchange membrane fuel cells (PEMFC), which convert the chemical energy into electrical energy directly through electrochemical reactions, are widely considered as one of the best power sources for new energy vehicles (NEV). Some of the major advantages of a PEMFC include high power density, high energy conversion efficiency, minimum pollution, low noise, fast startup and low operating temperature. The Membrane Electrode Assembly (MEA) is one of the core components of fuel cells, which composes catalyst layers (CL) coated proton exchange membrane (PEM) and gas diffusion layers (GDL). The performance of MEA is closely related to mass transportation and the rate of electrochemical reaction. The MEA plays a key role not only in the performance of the PEMFCs, but also for the reducing the cost of the fuel cells, as well as accelerating the commercial applications. Commercialized large-size MEA directly plays a major role in determining fuel cell stack and vehicle performance.
Technical Paper

State-of-the-Art and Development Trends of Assembly Technologies for Proton Exchange Membrane Fuel Cell Stack: A Review

2020-04-14
2020-01-1175
Proton Exchange Membrane Fuel Cell (PEMFC) uses hydrogen and oxygen for fuel, the whole energy conversion process almost has no negative impact on the environment. The PEM fuel cell stack with the advantages of low-operating temperature, high current density and fast start-up ability is considered to be the next generation of new electric vehicle power. However, due to the limited current output, it is difficult for a single cell to meet the practical application requirements. The actual fuel cell stack is formed by many single cells assembled together. The assembly process is often related to load transfer, material transfer, energy exchange, multi-phase flow, electrochemical reaction and other factors. The performance of MEA (Membrane Electrode Assembly), sealing gaskets and other components will change during the assembly process, which makes the fuel cell stack assembly process more complex.
Journal Article

Numerical Models for PEMFC Cold Start: A Review

2017-03-28
2017-01-1182
Startup from subzero temperature is one of the major challenges for polymer electrolyte membrane fuel cell (PEMFC) to realize commercialization. Below the freezing point (0°C), water will freeze easily, which blocks the reactant gases into the reaction sites, thus leading to the start failure and material degradation. Therefore, for PEMFC in vehicle application, finding suitable ways to reach successful startup from subfreezing environment is a prerequisite. As it’s difficult and complex for experimental studies to measure the internal quantities, mathematical models are the effective ways to study the detailed transport process and physical phenomenon, which make it possible to achieve detailed prediction of the inner life of the cell. However, review papers only on cold start numerical models are not available. In this study, an extensive review on cold start models is summarized featuring the states and phase changes of water, heat and mass transfer.
Technical Paper

Parameter Identification for a Proton Exchange Membrane Fuel Cell Model

2020-04-14
2020-01-0858
The proton exchange membrane fuel cell (PEMFC) system has emerged as the state-of-art power source for the electric vehicle, but the widespread commercial application of fuel cell vehicle is restricted by its short service life. An enabling high accuracy model holds the key for better understanding, simulation, analysis, subsystem control of the fuel cell system to extract full power and prolong the lifespan. In this paper, a quasi-dynamic lumped parameters model for a 3kW stack is introduced, which includes filling-and-emptying volume sub-models for the relationships between periphery signals and internal states, static water transferring sub-model for the membrane, and empirical electrochemical sub-model for the voltage response. Several dynamic experiments are carried out to identify unknown parameters of the model.
Technical Paper

A Progress Review on Heating Methods and Influence Factors of Cold Start for Automotive PEMFC System

2020-04-14
2020-01-0852
Fuel cell vehicles (FCV) have become a promising transportation tool because of their high efficiency, fast response and zero-emission. However, the cold start problem is one of the main obstacles to limit the further commercialization of FCV in cold weather countries. Many efforts have made to improve the cold start ability. This review presents comprehensive heating methods and influence factors of the research progress in solving the Proton Exchange Membrane Fuel Cells (PEMFC) system cold start problems with more than 100 patents, papers and reports, which may do some help for PEMFC system cold start from the point of practical utilization. Firstly, recent achievements and goals will be summarized in the introduction part. Then, regarding the heating strategies for the PEMFC system cold start, different heating solutions are classified into self-heating strategies and auxiliary-heating heating depending on their heating sources providing approach.
Technical Paper

IMM-KF Algorithm for Multitarget Tracking of On-Road Vehicle

2020-04-14
2020-01-0117
Tracking vehicle trajectories is essential for autonomous vehicles and advanced driver-assistance systems to understand traffic environment and evaluate collision risk. In order to reduce the position deviation and fluctuation of tracking on-road vehicle by millimeter-wave radar (MMWR), an interactive multi-model Kalman filter (IMM-KF) tracking algorithm including data association and track management is proposed. In general, it is difficult to model the target vehicle accurately due to lack of vehicle kinematics parameters, like wheel base, uncertainty of driving behavior and limitation of sensor’s field of view. To handle the uncertainty problem, an interacting multiple model (IMM) approach using Kalman filters is employed to estimate multitarget’s states. Then the compensation of radar ego motion is achieved, since the original measurement is under the radar polar coordinate system.
Technical Paper

Investigation of the Operating Conditions on the Water and Thermal Management for a Polymer Electrolyte Membrane Fuel Cell by One-Dimensional Model

2020-04-14
2020-01-0856
Water and thermal management is an essential issue that influences performance and durability of a polymer electrolyte membrane fuel cell (PEMFC). Water content in membrane decides its ionic conductivity and membrane swelling favors the ionic conductivity, resulting in decreases in the membrane’s ohmic resistance and improvement in the output voltage. However, if excessive liquid water can’t be removed out of cell quickly, it will fill in the pores of catalyst layer (CL) and gas diffusion layer (GDL) then flooding may occur. It is essential to keep the water content in membrane at a proper level. In this work, a transient isothermal one-dimensional model is developed to investigate effects of the relative humidity of inlet gas and cell temperature on performance of a PEMFC.
Technical Paper

Drivable Area Detection and Vehicle Localization Based on Multi-Sensor Information

2020-04-14
2020-01-1027
Multi-sensor information fusion framework is the eyes for unmanned driving and Advanced Driver Assistance System (ADAS) to perceive the surrounding environment. In addition to the perception of the surrounding environment, real-time vehicle localization is also the key and difficult point of unmanned driving technology. The disappearance of high-precision GPS signal suddenly and defect of the lane line will bring much more difficult and dangerous for vehicle localization when the vehicle is on unmanned driving. In this paper, a road boundary feature extraction algorithm is proposed based on multi-sensor information fusion of automotive radar and vision to realize the auxiliary localization of vehicles. Firstly, we designed a 79GHz (78-81GHz) Ultra-Wide Band (UWB) millimeter-wave radar, which can obtain the point cloud information of road boundary features such as guardrail or green belt and so on.
Technical Paper

Development of Online Fuel Cell High Frequency Resistance Monitor Controller

2020-04-14
2020-01-1177
Proton exchange membrane fuel cell (PEMFC) system is expected to be the next generation vehicle powertrain. However, water management is still the main problem which directly affects the performance, reliability and durability in PEMFC system. To ensure the accurate water content estimation, High Frequency Resistance (HFR) is the most representative indicator in laboratory. The HFR is calculated by detecting the Alternating Current (AC) voltage response of fuel cell under the excitation of 1k Hz AC current. The voltage level of the AC excitation affects the measurement of HFR. Generally, 5mV AC excitation is used to measure HFR for the fuel cell with an output voltage between 0.6-1V. So, online HFR monitor is a big challenge for vehicle application, due to its low Signal/Noise Ratio (S/N), poor Electromagnetic Compatibility (EMC) environment, high common mode voltage and several hundred cells. In this work, an online fuel cell HFR monitor controller is developed.
Technical Paper

Crashworthiness Design of Hierarchical Honeycomb-Filled Structures under Multiple Loading Angles

2020-04-14
2020-01-0504
Thin-walled structures have been widely used in automobile body design because of its good lightweight and superior mechanical properties. For the energy-absorbing box of the automobile, it is necessary to consider its working conditions under the axial and oblique impact. In this paper, a novel hierarchical honeycomb is proposed and used as filler for thin-walled structures. Meanwhile, the crashworthiness performances of the conventional honeycomb-filled and the hierarchical honeycomb-filled thin-walled structures under different impact conditions are systematically studied. The results indicate the energy absorption of the hierarchical honeycomb-filled thin-walled structure is higher than that of the conventional honeycomb-filled thin-walled structure, and the impact angle has significant effects on the energy absorption performance of the hierarchical honeycomb-filled structure.
Technical Paper

Elementary Investigation into Road Simulation Experiment of Powertrain and Components of Fuel Cell Passenger Car

2008-06-23
2008-01-1585
It is very important to investigate how road irregularity excitation will affect the durability, reliability, and performance degradation of fuel cell vehicle powertrain and its key components, including the electric motor, power control unit, power battery package and fuel cell engine system. There are very few published literatures in this research area. In this paper, an elementary but integrated experimental work is described, including the real road load sample on proving ground, road load reproduction on vibration test rig, total vehicle road simulation test and key components vibration tests. Remote parameter control technology is adopted to reproduce the real road load on road simulator and six-degree-of-freedom vibration table, which is used respectively for total vehicle and components vibration tests.
Technical Paper

3D Automotive Millimeter-Wave Radar with Two-Dimensional Electronic Scanning

2017-03-28
2017-01-0047
The radar-based advanced driver assistance systems (ADAS) like autonomous emergency braking (AEB) and forward collision warning (FCW) can reduce accidents, so as to make vehicles, drivers and pedestrians safer. For active safety, automotive millimeter-wave radar is an indispensable role in the automotive environmental sensing system since it can work effectively regardless of the bad weather while the camera fails. One crucial task of the automotive radar is to detect and distinguish some objects close to each other precisely with the increasingly complex of the road condition. Nowadays almost all the automotive radar products work in bidimensional area where just the range and azimuth can be measured. However, sometimes in their field of view it is not easy for them to differentiate some objects, like the car, the manhole covers and the guide board, when they align with each other in vertical direction.
Technical Paper

Analyze Signal Processing Software for Millimeter-Wave Automotive Radar System by Using a Software Testbench Built by SystemVue

2016-09-14
2016-01-1879
Millimeter-wave automotive radars can prevent traffic accidents and save human lives as they can detect vehicles and pedestrians even in night and in bad weather. Various types of automotive radars operating at 24 and 77 GHz bands are developed for various applications, like adaptive cruise control, blind-spot detection and lane change assistance. In each year, millions of millimeter-wave radar are sold worldwide. Millimeter-wave radar is composed of radar hardware and radar signal processing software, which detects the targets among noise, measures the distance, longitudinal speed and the azimuth angle of the targets, tracks the targets continuously, and controls the ego vehicle to brake or accelerate. Performance of the radar signal processing software is closely related with the radar hardware properties and radar measurement conditions.
Technical Paper

Effect of Road-Induced Vibration on Gas-Tightness of Vehicular Fuel Cell Stack

2016-04-05
2016-01-1186
The vehicular fuel cell stack is unavoidably impacted by the vibration in the real-world usage due to the road unevenness. However, effects of vibration on stacks have yet to be completely understood. In this work, the mechanical integrity and gas-tightness of the stack were investigated through a strengthen road vibration test with a duration of 200 h. The excitation signals applied in the vibration test were simulated by the acceleration of the stack, which were previously measured in a vehicle vibration test. The load signals of the vehicle vibration test were iterated through a road simulator from vehicle acceleration signals which were originally sampled in the proving ground. Frequency sweep test was conducted before and after the vibration test. During the vibration test, mechanical structure inspection and pressure maintaining test of the stack were conducted at regular intervals.
Technical Paper

The Application of Compressed Sensing in Automotive Radar Signal Processing for the Target Location

2017-09-23
2017-01-1973
Millimeter wave (MMW) automotive radar plays an important role in the advanced driving assistance system (ADAS), which detects vehicles, pedestrians and other obstacles. In the adaptive cruise control (ACC) and the automatic emergency brake (AEB) system, the target needs to be oriented. One of the automotive radar’s task is to get the direction information which includes the range, speed, azimuth and height of the target by high intermediate frequency (IF) signal sampling rate. In order to solve the problem of high sampling rate for the MMW radar caused by the traditional Nyquist sampling theorem when the target is located, a new method based on the compressed sensing (CS) for the target location is proposed in this paper. This paper presents the linear frequency modulated continuous wave (LFMCW) model and simulates the sampling and reconstruction of the radar’s IF signal via CS technique by using MATLAB.
Technical Paper

Hybrid Camera-Radar Vehicle Tracking with Image Perceptual Hash Encoding

2017-09-23
2017-01-1971
For sensing system, the trustworthiness of the variant sensors is the crucial point when dealing with advanced driving assistant system application. In this paper, an approach to a hybrid camera-radar application of vehicle tracking is presented, able to meet the requirement of such demand. Most of the time, different types of commercial sensors available nowadays specialize in different situations, such as the ability of offering a wealth of detailed information about the scene for the camera or the powerful resistance to the severe weather for the millimeter-wave (MMW) radar. The detection and tracking in different sensors are usually independent. Thus, the work here that combines the variant information provided by different sensors is indispensable and worthwhile. For the real-time requirement of merging the measurement of automotive MMW radar in high speed, this paper first proposes a fast vehicle tracking algorithm based on image perceptual hash encoding.
Technical Paper

Study on Target Tracking Based on Vision and Radar Sensor Fusion

2018-04-03
2018-01-0613
Faced with intricate traffic conditions, the single sensor has been unable to meet the safety requirements of Advanced Driver Assistance Systems (ADAS) and autonomous driving. In the field of multi-target tracking, the number of targets detected by vision sensor is sometimes less than the current tracks while the number of targets detected by millimeter wave radar is more than the current tracks. Hence, a multi-sensor information fusion algorithm is presented by utilizing advantage of both vision sensor and millimeter wave radar. The multi-sensor fusion algorithm is based on centralized fusion strategy that the fusion center takes a unified track management. At First, vision sensor and radar are used to detect the target and to measure the range and the azimuth angle of the target. Then, the detections data from vision sensor and radar is transferred to fusion center to join the multi-target tracking with the prediction of current tracks.
Technical Paper

Evaluation Method of Harmony with Traffic Based on a Backpropagation Neural Network Optimized by Mean Impact Value

2021-06-02
2021-01-5060
With the development of autonomous driving, the penetration rate of autonomous vehicles on the road will continue to grow. As a result, the social cooperation ability of autonomous vehicles will have a great effect on the social acceptance of autonomous driving, which can be described as harmony with traffic. In order to research the evaluation method of the harmony with traffic, this paper proposes a subjective and objective mapping evaluation method based on the Mean Impact Value and Backpropagation (MIV-BP) Neural Network, with the merging vehicle on the expressway ramp as the research object. Firstly, by taking 16 original objective indexes obtained by theoretical analysis and the subjective evaluation results as input and output, respectively, the BP Neural Network model is constructed as a baseline model. Secondly, nine selected objective indexes are selected by the MIV method based on the baseline model.
Technical Paper

Instantaneous Optimization Energy Management for Extended-Range Electric Vehicle Based on Minimum Loss Power Algorithm

2013-09-08
2013-24-0073
Most of the existing energy management strategies for Extended-Range Electric Vehicles (E-REVs) are heuristic, which restricts coordination between the battery and the Range Extender. This paper presents an instantaneous optimization energy management strategy based on the Minimum Loss Power Algorithm (MLPA) for a fuel cell E-REV. An instantaneous loss power function of power train system is constructed by considering the charge and discharge efficiency of the battery, together with the working efficiency of the fuel cell Range Extender. The battery working mode and operating points of the fuel cell Range Extender are decided by an instantaneous optimization module (an artificial neural network) that aims to minimize the loss power function at each time step.
X