Refine Your Search

Topic

Author

Search Results

Journal Article

Development of Trivalent Chromium Passivation for Zn Platng with High Corrosion Resistance after Heating

2016-04-05
2016-01-0542
Trivalent chromium passivation is used after zinc plating for enhancing corrosion resistance of parts. In the passivating process, the amount of dissolved metal ions (for example zinc and iron) in the passivation solution increases the longer the solution is used. This results in a reduced corrosion resistance at elevated temperatures. Adding a top coat after this process improves the corrosion resistance but has an increased cost. To combat this, we strove to clarify the mechanism of decreased corrosion resistance and to develop a trivalent chromium passivation with a higher corrosion resistance at elevated temperatures. At first, we found that in parts produced from an older solution, the passivation layer has cracks which are not seen in parts from a fresh/new solution. These cracks grow when heated at temperatures over 120 degrees Celsius.
Journal Article

Study of Stress Measurements Technique for Internal Electrical Connection of Printed Circuit Boards using Synchrotron Radiation

2008-04-14
2008-01-0697
Measurements of residual stress in a printed circuit board, which consists of copper foil, silver alloy and thermo plastic resin, were conducted under a thermal cycle. The printed circuit board was given a ten-layer repeat of prepreg and made by thermocompression bonding. Experiments suggested the possibility of measuring surface residual stress of copper circuits and the internal residual stress of metallic connections by synchrotron radiation of Spring-8. FEM analysis of the printed circuit board during a thermal cycle was conducted, and the result was adjusted to X-ray stress using absorption correction. X-ray stress during a heat-cycle obtained by synchrotron radiation showed good agreement with stress calculated by FEM analysis.
Journal Article

Capacitive Humidity Sensors Using Highly Durable Polyimide Membrane

2013-04-08
2013-01-1337
Humidity sensors used in automatic windshield defogging controls contribute to the improvement of fuel consumption. The optimum control of air conditioning systems can be realized by adding humidity information to conventional systems which have used only temperature information. While resistive humidity sensors have been widely used, their sensing range and responsiveness are observed as issues. Resistive sensors cannot function at a humidity range of around 100% RH as well as at a low temperature range, and have a low response rate to sudden changes in humidity. It is considered that resistive humidity sensors will be replaced with capacitive ones which have a wide sensing range and high responsiveness.
Technical Paper

Effect of Initial Fuel Temperature on Spray Characteristics of Multicomponent Fuel

2020-09-15
2020-01-2113
Fuel design concept has been proposed for low emission and combustion control in engine systems. In this concept, the multicomponent fuels, which are mixed with a high volatility fuel (gasoline or gaseous fuel components) and a low volatility fuel (gas oil or fuel oil components), are used for artificial control of fuel properties. In addition, these multicomponent fuels can easily lead to flash boiling which promote atomization and vaporization in the spray process. In order to understand atomization and vaporization process of multicomponent fuels in detail, the model for flash boiling spray of multicomponent fuel have been constructed and implemented into KIVA3V rel.2. This model considers the detailed physical properties and evaporation process of multicomponent fuel and the bubble nucleation, growth and disruption in a nozzle orifice and injected fuel droplets.
Technical Paper

Development of Sintered Bearing Material with Higher Corrosion Resistance for Fuel Pumps

2007-04-16
2007-01-0415
In recent years, due to a growing demand for improvement in the performance and reliability of automotive fuel pumps and the advancement of globalization, automotive fuel pumps are being used with inferior gasolines that include more sulfur, organic acids or compounds, compared to gasolines used in general regions. Conventionally, bearings in these fuel pumps have mainly been made of sintered bronze alloy. With this bronze alloy, however, it is difficult to achieve a significant improvement in the tribology characteristics of bearings, in order to meet the demands for performance improvement, etc., and corrosion is severe in inferior gasolines that contain highly-concentrated organic acids or sulfur and the corrosion products that accompany them. Therefore, in order to obtain fine tribology characteristics and superior corrosion resistance in gasolines with highly-concentrated organic acids and sulfur, various copper-based alloys were studied using the powder metallurgy process.
Technical Paper

Reliability Analysis of Adhesive for PBT-Epoxy Interface

2007-04-16
2007-01-1517
PBT (polybutylene terephthalate) and epoxy adhesive, which both have superior heat resistance and environmental resistance, are a representative combination now being applied to many parts. Generally, PBT is annealed after molding at a temperature above the glass transition temperature to ensure dimensional stability when in use. But in this case, this process decreases the adhesive strength between PBT and epoxy. This study analyzes the adhesion degradation mechanism in this system and a countermeasure technology is proposed. Regarding this PBT-epoxy adhesion degradation mechanism, focus is placed on changes in the fracture surface, which is analyzed before and after annealing. From this analysis it becomes clear that generation of a WBL (weak boundary layer) is caused by non-crystallization and a migration of the PBT functional group on the adhesion surface layer.
Technical Paper

Hexagonal Cell Ceramic Substrates for Lower Emission and Backpressure

2008-04-14
2008-01-0805
Stringent emission regulations call for advanced catalyst substrates with thinner walls and higher cell density. However, substrates with higher cell density increase backpressure, thinner cell wall substrates have lower mechanical characteristics. Therefore we will focus on cell configurations that will show a positive effect on backpressure and emission performance. We found that hexagonal cells have a greater effect on emission and backpressure performance versus square or round cell configurations. This paper will describe in detail the advantage of hexagonal cell configuration versus round or square configurations with respect to the following features: 1 High Oxygen Storage Capacity (OSC) performance due to uniformity of the catalyst coating layer 2 Low backpressure due to the large hydraulic diameter of the catalyst cell 3 Quick light off characteristics due to efficient heat transfer and low thermal mass
Technical Paper

Vaporization Characteristics and Liquid-Phase Penetration for Multi-Component Fuels

2004-03-08
2004-01-0529
The maximum liquid-phase penetration and vaporization behavior was investigated by using simultaneous measurement for mie-scattered light images and shadowgraph ones. The objective of this study was to analyze effect of variant parameters (injection pressure, ambient gas condition and fuel temperature) and fuel properties on vaporization behavior, and to investigate liquid phase penetration for the single- and multi-component fuels. The experiments were conducted in a constant-volume vessel with optical access. Fuel was injected into the vessel with electronically controlled common rail injector.
Technical Paper

Analysis of Diesel Spray Structure by Using a Hybrid Model of TAB Breakup Model and Vortex Method

2001-03-05
2001-01-1240
This study proposes a hybrid model which consists of modified TAB(Taylor Analogy Breakup) model and DVM(Discrete Vortex Method). In this study, the simulation process is divided into three steps. The first step is to analyze the breakup of droplet of injected fuel by using modified TAB model. The second step based on the theory of Siebers' liquid length is analysis of spray evaporation. The liquid length analysis of injected fuel is used for connecting both modified TAB model and DVM. The final step is to reproduce the ambient gas flow and inner vortex flow injected fuel by using DVM. In order to examine the hybrid model, an experiment of a free evaporating fuel spray at early injection stage of in-cylinder like conditions had been executed. The numerical results calculated by using the present hybrid model are compared with the experimental ones.
Technical Paper

A Stiffness Optimization Procedure for Automobile Rubber Mounts

2001-04-30
2001-01-1445
Generally, it is well known that road noise generated by vibration from automobile tires and suspensions can be reduced by changing the stiffness of the rubber mounts installed in the suspension systems. Such stiffness, however, is rarely changed to avoid riding discomfort and so on. In this paper, a stiffness optimization method for suspension system rubber mounts that reduces road noise, and improves riding comfort as well, is presented. In the process, Road Noise Contribution Analysis (RNCA) is applied to the target vehicle to specify the major factors of road noise. Furthermore, the suspension system of the vehicle is investigated by Sensitivity Analysis using Measured FRF data (SAMF) to identify the optimal stiffness combination of rubber mounts. As a result, an effective stiffness combination of two mounts is specified to reduce road noise and to improve riding comfort.
Technical Paper

Reduction of Vibration in Tractor Using Semi-Active Suspension

2002-03-19
2002-01-1469
Recently, the development stage of agricultural vehicles such as the tractor has focused on new demands to improve the cabin environment. Especially the ride comfort has become increasingly important. For this purpose, rubber bushes have been installed the tractor to reduce road vibration to the driver in the cabin. However, this device does not sufficiently suppress vibration. This paper presents a method of vibration reduction that installs a semi-active suspension in the lateral and vertical directions at the cabin mount position of the tractor. In numerical simulation, the tractor model installed with a semi-active suspension is superior in performance to the conventional tractor model.
Technical Paper

Optimization of Manufacturing Process of Glass Fibers/Phenol Composites. Effects of Solidification Conditions, Fiber Length and Additional Materials on their Mechanical Properties

2003-03-03
2003-01-1128
The aim of these experiments is to determine the best way to obtain high mechanical properties for phenol resin and glass fibers based composites. Various ways of fabricating the material were studied, as well as its best composition. The conditions of drying, molding processes were optimized. From the most conventional method, using ethanol as a solvent to newer ones, including continuous ways of processing and the use of water instead of ethanol, a lot of possibilities exist to produce such a material. This paper explains the advantages and drawbacks of a whole range of manufacturing processes.
Technical Paper

Vibration Analysis of Engine Supported by Hydraulic Mounts

2003-05-05
2003-01-1465
This paper describes a steady vibration of an engine supported by rubber and hydraulic mounts at a relatively low frequency range, assuming an engine is a rigid body. We identify dynamic characteristics of a hydraulic mount with respect to frequency and amplitude. The equation of motion is solved numerically by the Newton-Raphson method, treating the mount characteristics as functions of frequency and amplitude. The excitation test to simulate an engine shake and an idling vibration was performed using a mass block instead of an actual engine. During the engine shake, we observed that the amplitude dependency of hydraulic mounts strongly influences the vibration, while idling, we investigated rolling vibration especially for the case where the torque axis does not pass through the engine's center of gravity. The theoretical predictions agree closely with the experimental results in both engine shake and idling vibration tests.
Technical Paper

Effects of Ambient Gas Conditions on Ignition and Combustion Process of Oxygenated Fuel Sprays

2003-05-19
2003-01-1790
This work presents the ignition delay time characteristics of oxygenated fuel sprays under simulated diesel engine conditions. A constant volume combustion vessel is used for the experiments. The fuels used in the experiments were three oxygenated fuels: diethylene glycol dibutyl ether, diethylene glycol diethyl ether, and diethylene glycol dimethyl ether. JIS 2nd class gas oil was used as the reference fuel. The ambient gas temperature and oxygen concentration were ranging from 700 to 1100K and from 21 to 9%, respectively. The results show that the ignition delay of each oxygenated fuel tested in this experiments exhibits shorter than that of gas oil fuel for the wide range of ambient gas conditions. Also, NTC (negative temperature coefficient) behavior which appears under shock tube experiment for homogenous fuel-air mixture was observed on low ambient gas oxygen concentration for each fuel. And at the condition, the ignition behavior exhibits two-stage phase.
Technical Paper

Diesel Powertrain Energy Management via thermal Management and Electrification

2017-03-28
2017-01-0156
The coming Diesel powertrains will remain as key technology in Europe to achieve the stringent 2025 CO2 emission targets. Especially for applications which are unlikely to be powered by pure EV technology like Light Duty vehicles and C/D segment vehicles which require a long driving range this is the case. To cope with these low CO2 targets the amount of electrification e.g. in form of 48V Belt-driven integrated Starter Generator (BSG) systems will increase. On the other hand the efficiency of the Diesel engine will increase which will result in lower exhaust gas temperatures resulting in a challenge to keep the required NOx reduction system efficiencies under Real Drive Emissions (RDE) driving conditions. In order to comply with the RDE legislation down to -7 °C ambient an efficient thermal management is one potential approach. Commonly utilized means to increase exhaust gas temperature are late injection and/or intake throttling, which enable sufficient NOx reduction efficiency.
Technical Paper

Reduction of Reaction Mechanism for n-Tridecane Based on Knowledge of Detailed Reaction Paths

2016-10-17
2016-01-2238
n-Tridecane is a low boiling point component of gas oil, and has been used as a single-component fuel for diesel spray and combustion experiments. However, no reduced chemical kinetic mechanisms for n-tridecane have been presented for three-dimensional modeling. A detailed mechanism developed by KUCRS (Knowledge-basing Utilities for Complex Reaction Systems), contains 1493 chemical species and 3641 reactions. Reaction paths during ignition process for n-tridecane in air computed using the detailed mechanism, were analyzed with the equivalence ratio of 0.75 and the initial temperatures of 650 K, 850 K, and 1100 K, which are located in the cool-flame dominant, negative-temperature coefficient, and blue-flame dominant regions, respectively.
Technical Paper

Analysis of Influence Factors for Partial Discharge Inception Voltage between Magnet-Wires on Rotating Machines

2016-04-05
2016-01-1226
In automobiles, Integrated Starter Generators (ISGs) are important components since they ensure significant fuel economy improvements. With motors that operate at high voltage such as ISGs, it is important to accurately know partial discharge inception voltages (PDIVs) for the assured insulation reliability of the motors. However, the PDIVs vary due to various factors including the environment (temperature, atmospheric pressure and humidity), materials (water absorption and degradation) and voltage waveforms. Consequently, it is not easy either empirically or analytically to ascertain the PDIVs in a complex environment (involving, for example, high temperature, low atmospheric pressure and high humidity) in which many factors vary simultaneously, as with invehicle environments. As a well-known method, PDIVs can be analyzed in terms of two voltage values, which are the breakdown voltage of the air (called “Paschen curve”) and the shared voltage of the air layer.
Technical Paper

Development of High Efficiency Rectifier with MOSFET in “eSC Alternator”

2017-03-28
2017-01-1228
Alternator, which supplies electric energy to a battery and electrical loads when it is rotated by engine via belt, is one of key components to improve vehicle fuel efficiency. We have reduced rectification loss from AC to DC with a MOSFET instead of a rectifier diode. It is important to turn on the MOSFET and off during a rectification period, called synchronous control, to avoid a current flow in the reverse direction from the battery. We turn it off so as to remain a certain conduction period through a body diode of the MOSFET before the rectification end. It is controlled by making a feedback process to coincide with an internal target conduction period based on the rotational speed of the alternator. We reduced a voltage surge risk at turn-off by changing the feedback gain depending on the sign of the time difference between the measured period and the target.
Technical Paper

Reliability of SiC-MOSFET for Hybrid Vehicle

2012-04-16
2012-01-0337
This paper describes the reliability of silicon carbide (SiC) MOSFET. We clarified the relation between the lifetime of the gate oxide and the crystal defects. We fabricated MOS diodes using thermal oxidation and measured their lifetimes by TDDB (Time Dependent Dielectric Breakdown) measurement. The wear-out lifetime is sufficient for hybrid vehicle but many MOS diodes broke in shorter time. The breakdown points were defined by Photo-emission method. Finally, we classified the defects by TEM (Transmission Electron Microscopy). A TSD (Threading Screw Dislocation) plays the most important role in the lifetime degradation of the gate oxide. The lifetime of the gate oxide area, in which a TSD is included, is shorter by two orders of magnitude than a wear-out breakdown. The mechanism by which threading dislocations degrade the gate oxide lifetime was not discovered. To explain the degradation, we assumed two models, the shape effect and the oxide quality degradation.
Technical Paper

Power Transmitting Mechanisms of CVT Using a Metal V-Belt and Load Distribution in the Steel Ring

1998-02-23
980824
An advanced numerical model is proposed to analyze the power transmitting mechanisms of a CVT using a metal V-belt. By using the present model, forces acting on the belt are well estimated not only at steady states but also during transitional states where the speed ratio is changing. The numerical results show that blocks are in compression in both strands when the speed ratio is rapidly shifted. A complementary model is also developed to analyze the load distribution among bands which form the ring. The load distribution in the ring is governed by the difference in coefficients of friction among elements.
X