Refine Your Search

Search Results

Viewing 1 to 3 of 3
Video

Some Aspects of Toyota PHEV Prius OBD

2012-02-01
Plug-in Hybrid Electric Vehicles (PHEVs) are entering the market and bring with them new OBD issues. A key one is how to measure in-use monitor performance ratio and where to set a standard for this, as PHEVs will have varying amounts of engine-on operation depending on customer plug-in and driving behavior. Toyota�s Prius PHEV system is described and customer use data from a US demonstration fleet is examined. Some prior denominator proposals by Toyota and CARB are explained, as background for the current CARB/industry agreement for denominator and ratio. Presenter Morton M. Smith, Toyota
Technical Paper

Development of a S-FLOW System and Control (S‑FLOW: Energy Saving Air Flow Control System)

2013-04-08
2013-01-1499
This paper focuses on the development of the centralized air flow system S-FLOW (Energy Saving Air Flow Control System). The S-FLOW system directs thermal energy to each seating position in the vehicle based on occupancy, thus prioritizing the energy usage based on the particular scenario. The thermal environment in a vehicle's cabin is non-uniform. If the climate control system is used to direct airflow exclusively to any one region of the cabin, without special considerations, comfort may be adversely impacted. To solve this concern, a non-uniform evaluation method was developed to evaluate comfort at each body region of the occupant using the SET* (Standard new effective temperature) method. SET* is a parameter that combines the effects of temperature, airflow velocity, humidity, and other parameters to quantify thermal comfort. Next, a method was established that correlated each body region's SET* value to the occupant's overall thermal comfort.
Technical Paper

Development of Aluminum-Clad Material for Corrosion Resistance Cooler

2013-04-08
2013-01-0380
As greater emphasis is placed on the development of small fuel-efficient cars, there is a growing need to reduce the size of the inverter used in hybrid vehicles (HVs). However, semiconductor devices and other components are generating larger amounts of heat and the parts used to cool these components are becoming thinner. One issue resulting from these trends is perforations that propagate from coolant paths. This development secured corrosion resistance by controlling sacrificial corrosion protection performance, optimizing the use of Mn and Si materials to reduce susceptibility to grain-boundary corrosion, and taking a microstructural approach to the flow of the brazing filler metal. The developed material was applied to the inverter cooler of a small HV released at the end of 2011.
X