Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Low-Emission and Fuel-Efficient Exhaust System with New Air-Fuel Ratio Sensor

2020-04-14
2020-01-0655
This paper describes an exhaust system using a new air-fuel ratio (hereinafter, A/F) sensor that contributes to low emissions and low fuel consumption of gasoline engines. As the first technical feature, the water splash resistance of the A/F sensor has been substantially improved which allows A/F control to be enabled without delay during engine cold start. To realize this capability, it is important that the sensor characteristics are not affected by the condensed water generated in the exhaust pipe. Therefore, a technique that has the effectiveness of a water splash resistance layer with water repellent function is demonstrated. As the second technical feature, the power consumption of the sensor has been substantially reduced. This is achieved by improving thermal efficiency of the sensor that the element can be activated at a low temperature.
Journal Article

Measurement of Oil Film Pressure in the Main Bearings of an Operating Engine Using Thin-Film Sensors

2008-04-14
2008-01-0438
We developed a technique to measure oil film pressure distribution in engine main bearings using thin-film pressure sensors. The sensor is 7μm in thickness, and is processed on the surface of an aluminum alloy bearing. In order to increase the durability of the sensor, a layer of MoS2 and polyamide-imide was coated on thin-film sensors. This technique was applied to a 1.4L common-rail diesel engine operated at a maximum speed of 4,500r/min with a 100Nm full load, and the oil film pressure was monitored while the engine was operating. The measured pressure was compared with calculations based on hydrodynamic lubrication (HL) theory.
Journal Article

Calibration and Validation of a Diesel Oxidation Catalyst Model: from Synthetic Gas Testing to Driving Cycle Applications

2011-04-12
2011-01-1244
To meet future stringent emission regulations such as Euro6, the design and control of diesel exhaust after-treatment systems will become more complex in order to ensure their optimum operation over time. Moreover, because of the strong pressure for CO₂ emissions reduction, the average exhaust temperature is expected to decrease, posing significant challenges on exhaust after-treatment. Diesel Oxidation Catalysts (DOCs) are already widely used to reduce CO and hydrocarbons (HC) from diesel engine emissions. In addition, DOC is also used to control the NO₂/NOx ratio and to generate the exothermic reactions necessary for the thermal regeneration of Diesel Particulate Filter (DPF) and NOx Storage and Reduction catalysts (NSR). The expected temperature decrease of diesel exhaust will adversely affect the CO and unburned hydrocarbons (UHC) conversion efficiency of the catalysts. Therefore, the development cost for the design and control of new DOCs is increasing.
Journal Article

Thermal Analysis of Traction Contact Area Using a Thin-film Temperature Sensor

2013-04-08
2013-01-0368
The purpose of this paper is to construct the thermal analysis model by measuring and estimating the temperature at the traction contact area. For measurement of temperature, we have used a thin-film temperature sensor. For estimation of temperature, we have composed the thermal analysis model. The thin-film temperature sensor was formed on the contact surface using a spattering device. The sensor is constituted of three layers (sensor layer, insulation layer and intermediate layer). Dimensions of the sensor were sufficiently smaller than the traction contact area. The sensor featured high specific pressure capacity and high speed responsiveness. The thermal analysis model was mainly composed of three equations: Carslaw & Jaeger equation, Rashid & Seireg equation and heat transfer equation of shear heating in oil film. The heat transfer equation involved two models (local shear heating model at middle plane, homogeneous shear heating model).
Journal Article

Design of Seat Mounted ECG Sensor System for Vehicle Application

2013-04-08
2013-01-1339
The causes of deaths in traffic accidents are predominantly human factors such as careless or "heedlessness" driving; recently, accidents that are believed to be due to deteriorated physical conditions, such as heart attacks, have been reported. Non-contact electrocardiography (ECG) monitor for continuous ECG detection while driving is needed to reduce a number of fatal accident by human error like this. Recently there are a lot of papers to detect cardiac electricity using capacitance coupling between human body and electrode. This sensor system must be adopted appropriate high input impedance circuit and noise reduction technique as a function of source impedance value especially for a seat mounted sensor.
Journal Article

Capacitive Humidity Sensors Using Highly Durable Polyimide Membrane

2013-04-08
2013-01-1337
Humidity sensors used in automatic windshield defogging controls contribute to the improvement of fuel consumption. The optimum control of air conditioning systems can be realized by adding humidity information to conventional systems which have used only temperature information. While resistive humidity sensors have been widely used, their sensing range and responsiveness are observed as issues. Resistive sensors cannot function at a humidity range of around 100% RH as well as at a low temperature range, and have a low response rate to sudden changes in humidity. It is considered that resistive humidity sensors will be replaced with capacitive ones which have a wide sensing range and high responsiveness.
Technical Paper

Nano Particle Emission Evaluation of State of the Art Diesel Aftertreatment Technologies (DPF, urea-SCR and DOC), Gasoline Combustion Systems (Lean Burn / Stoichiometric DISI and MPI) and Fuel Qualities Effects (EtOH, ETBE, FAME, Aromatics and Distillation)

2007-10-29
2007-01-4083
Newly designed laboratory measurement system, which reproduces particle number size distributions of both nuclei and accumulation mode particles in exhaust emissions, was developed. It enables continuous measurement of nano particle emissions in the size range between 5 and 1000 nm. Evaluations of particle number size distributions were conducted for diesel vehicles with a variety of emission aftertreatment devices and for gasoline vehicles with different combustion systems. For diesel vehicles, Diesel Oxidation Catalyst (DOC), urea-Selective Catalytic Reduction (urea-SCR) system and catalyzed Diesel Particulate Filter (DPF) were evaluated. For gasoline vehicles, Lean-burn Direct Injection Spark Ignition (DISI), Stoichiometric DISI and Multi Point Injection (MPI) were evaluated. Japanese latest transient test cycles were used for the evaluation: JE05 mode driving cycle for heavy duty vehicles and JC08 mode driving cycle for light duty vehicles.
Technical Paper

JCAPII Cross Check Tests of Fast Electrical Mobility Spectrometers for Evaluation of Accuracy

2007-10-29
2007-01-4081
Crosscheck tests of fast electrical mobility spectrometers, Differential Mobility Spectroscopy (DMS) and Engine Exhaust Particle Sizer(EEPS), were conducted to evaluate the accuracy of fine particle measurement. Two kinds of particles were used as test particles for the crosscheck test of instruments: particles emitted from diesel vehicles and diluted in a full dilution tunnel, and particles generated by CAST. In the steady state tests, it was confirmed that the average concentration of each instrument was within the range of ±2σ from the average concentration of all the same type of instruments. In the transient tests, it is verified that the instruments have almost equal sensitivity. For application of the fast electrical mobility spectrometers to evaluation of particle number and size distributions, it is essential to develop a calibration method using reference particle counters and sizers (CPC, SMPS, etc.) and maintenance methods appropriate for each model.
Technical Paper

Unregulated Emissions Evaluation of Gasoline Combustion Systems (Lean Burn / Stoichiometric DISI and MPI), State of the Art Diesel Aftertreatment Technologies (DPF, urea-SCR and DOC), and Fuel Qualities Effects (EtOH, ETBE, Aromatics and FAME)

2007-10-29
2007-01-4082
In order to clarify future automobile technologies and fuel qualities to improve air quality, second phase of Japan Clean Air Program (JCAPII) had been conducted from 2002 to 2007. Predicting improvement in air quality that might be attained by introducing new emission control technologies and determining fuel qualities required for the technologies is one of the main issues of this program. Unregulated material WG of JCAPII had studied unregulated emissions from gasoline and diesel engines. Eight gaseous hydrocarbons (HC), four Aldehydes and three polycyclic aromatic hydrocarbons (PAHs) were evaluated as unregulated emissions. Specifically, emissions of the following components were measured: 1,3-Butadiene, Benzene, Toluene, Xylene, Ethylbenzene, 1,3,5-Trimethyl-benzene, n-Hexane, Styrene as gaseous HCs, Formaldehyde, Acetaldehyde, Acrolein, Benzaldehyde as Aldehydes, and Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(k)fluoranthene as PAHs.
Technical Paper

Performance of Two/Four Stroke Gasoline HCCI Engine with Electromagnetic Valve Train

2007-07-23
2007-01-1868
Comparison of net thermal efficiency and emission in two and four stroke gasoline HCCI engine has been carried out for various valve-timings as negative valve overlap and exhaust valve double opening. The valve timings could easily be converted from a mode to another by configuring schedule of electromagnetic valve-train. Extension of operable torque with high thermal efficiency had been expected in two-stroke HCCI operation, however friction and supercharger loss curtailed about half of the gain in indicated thermal efficiency. In four-stroke operation modes, exhaust valve double opening (‘reinduction’ or ‘rebreathing’) showed the best net thermal efficiency and emission, however the extension of high load limit could not be achieved considerably.
Technical Paper

Development of a Scanning Laser Radar for ACC

1998-02-23
980615
This paper introduces the cruise control system with distance control function, that is called Adaptive Cruise Control (ACC), that uses a scanning laser radar as a sensor to detect preceding vehicles. With the goal of increasing the driving convenience and comfort when compared to the conventional cruise control, lots of ACC systems have been proposed and developed. This paper presents ACC system using the scanning laser radar which was developed by Toyota, and describes the adaptation of the system specifications. This ACC system was able to greatly reduce the driver's work load, and increased the driver's convenience and comfort when operating the cruise controls system. In addition, we were able to design this system to be highly dependable and inexpensive and supply it to the market as a result of incorporating various ideas for improvements.
Technical Paper

Study of a Two-Degree-of-Freedom Exhaust System

1990-02-01
900164
An investigation was conducted into pressure pulsation in the exhaust port, which greatly affects volumetric efficiency and engine performance. From experiments using a single blow-down generator, it was established that the amplitude of the pressure pulsation increases as the manifold branch is lengthened and that large negative pressure synchronized with the timing of valve overlap can be obtained if a proper branch length is used. The performance of a 2ℓ test engine was optimized by varying the length of both the manifold branches and front pipe forks. It was found that whereas front pipe fork length affects engine performance over only a narrow range of engine speed, optimizing manifold branch length results in a considerable improvement over a wide engine speed range. In the course of optimizing the exhaust pipe manifold length of this two-degree-of-freedom exhaust system, abnormal exhaust noises were emitted at specific engine speeds during deceleration.
Technical Paper

Stereo Vision System for Advanced Vehicle Safety System

2007-04-16
2007-01-0405
In this paper, we will introduce a stereo vision system developed as a sensor for a vehicle's front monitor. This system consists of three parts; namely, a stereo camera that collects video images of the forward view of the vehicle, a stereo ECU that processes its output image, and a near-infrared floodlight for illuminating the front at night. We were able to develop an obstacle detection function for the Pre-Crash Safety System and also a traffic lane detection function for a Lane-Keeping Assist System. Especially in regard to the obstacle detection function, we were able to achieve real-time processing of the disparity image calculations that had formerly required long processing times by using two types of recently developed LSIs.
Technical Paper

The Advanced Sensor Fusion Algorithm for Pre-Crash Safety System

2007-04-16
2007-01-0402
An obstacle recognition algorithm for the Pre-Crash Safety system has been newly developed with a stereo vision system and a millimeter wave radar with additional functions. This algorithm uses the merits of both the millimeter wave radar and the stereo vision system, and has two main features. One feature utilizes the merits of the stereo vision system detection with the detection results from the millimeter wave radar allowing for a more detailed horizontal position and width of the obstacle. This enables the equipment to operate at an earlier stage according to how well the relationship between the vehicle and the obstacle is understood. Another feature fuses detection from the millimeter wave radar and the stereo vision system. This system has succeeded in enhancing the detection performance of pedestrians who have been more difficult to detect than reflective objects such as cars.
Technical Paper

Development of Direct and Fast Response Gas Measurement

2008-04-14
2008-01-0758
Due to regulations for even lower levels of pollutants in exhaust gas, development of advanced combustion techniques and increasingly efficient catalysts has become more crucial than ever. One of the essential technologies to achieve this goal is an advanced measurement method, which can detect the characteristics of exhaust gas, such as temperature and chemical compositions, in real-time to clarify their reaction mechanisms. A direct and fast response (1ms) measurement technique was developed based on diode laser absorption spectroscopy and applied to practical engine exhaust measurement to prove the validity of this technology for various applications such as clarification of engine start phenomena and improvement of EGR controls.
Technical Paper

Development of High Performance Three-Way-Catalyst Technology to Lower NOx Emission

2009-04-20
2009-01-1398
One primary result of the reduction of platinum group metals (PGM) within a catalytic converter is the decline in NOx conversion efficiency. This paper hypothesizes that the primary factor of this decline to be hydrocarbon (HC) poisoning. To maintain high NOx conversion efficiency as the PGM reduces, Rh activation improvement becomes significant to overcome the HC poisoning. Analysis of the Rh deterioration mechanism found that it is effective to separately arrange Rh and CeO2 on the converter, avoiding the Rh deactivation. By this improvement, we improved the catalyst activity at less than 25% of the original Rh loading.
Technical Paper

Analysis of Sophisticated DPNR Catalyst, Focused on PM Particle Number Emissions

2009-04-20
2009-01-0290
Diesel particulate and NOx reduction system (DPNR) is an effective technology for the diesel after-treatment system, which can reduce particulate matter (PM) and nitrogen oxides (NOx) simultaneously. Further improvement of the DPNR is expected for cleaner air in the future. The catalyst for the DPNR (called DPNR catalyst) consists of a NOx Storage Reduction (NSR) catalyst coated onto a Diesel Particulate Filter (DPF). The development of the DPNR catalyst for the decrease of exhaust weight has been considered before now with respect to the PM combustion. But it will be necessary to focus on PM particle number emissions in the future. In this study, the relationship between the pore structure of the DPNR catalyst and the trapping of PM to lower particle number was clarified by evaluating a high-porosity, large-pore cordierite DPF with an average pore size of 20 μm or greater. Furthermore, the optimal pore structure to trap PM particles in a highly effective manner was discussed.
Technical Paper

Development of a New Breath Alcohol Detector without Mouthpiece to Prevent Drunk Driving

2009-04-20
2009-01-0638
Breath alcohol interlock systems are used in Europe and the U.S. for drunk driving offenders, and a certain effect has been revealed in the prevention of drunk driving. Nevertheless, problems remain to be solved with commercialized detectors, i.e., a person taking the breath alcohol test must strongly expire to the alcohol detector through a mouthpiece for every test, more over the determination of the breath alcohol concentration requires more than 5 seconds. The goal of this research is to develop a device that functions suitable and unobtrusive enough as the interlock system. For this purpose, a new alcohol detector, which does not require a long and hard blowing to the detector through a mouthpiece, has been investigated. In this paper, as a tool available on board, a contact free alcohol detector for the prevention of drunk driving has been developed.
Technical Paper

Impact Study of High Biodiesel Blends on Performance of Exhaust Aftertreatment Systems

2008-10-06
2008-01-2494
Biodiesel Fuel (BDF) Research Work Group works on identifying technological issues on the use of high biodiesel blends (over 5 mass%) in conventional diesel vehicles under the Japan Auto-Oil Program started in 2007. The Work Group conducts an analytical study on the issues to develop measures to be taken by fuel products and vehicle manufacturers, and to produce new technological findings that could contribute to the study of its introduction in Japan, including establishment of a national fuel quality standard covering high biodiesel blends. For evaluation of the impacts of high biodiesel blends on performance of diesel particulate filter system, a wide variety of biodiesel blendstocks were prepared, ranging from some kinds of fatty acid methyl esters (FAME) to another type of BDF such as hydrotreated biodiesel (HBD). Evaluation was mainly conducted on blend levels of 20% and 50%, but also conducted on 10% blends and neat FAME in some tests.
Technical Paper

Development of a New DPNR Catalyst

2004-03-08
2004-01-0578
We, at Toyota, have been working to develop a new DPNR (Diesel Particulate-NOx Reduction) system to decrease both PM and NOx emissions by combining the NOx storage-reduction catalyst for direct injection gasoline engines with the most advanced engine control technologies. The purpose of the DPNR catalyst is to decrease PM and NOx in order to purify automotive exhaust gas. To reduce PM emissions, the PM trapping rate and PM oxidizing performance must be improved. Since the deposition of PM increases the pressure drop across the catalytic converter, it should also be suppressed. To attain these objectives, we have developed a new DPNR catalyst by the adoption of a new porous substrate structure and the improvement of the catalyst coating technique. The new DPNR catalyst will be mounted on the Avensis for commercial use in the European market.
X