Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Development of a New Breath Alcohol Detector without Mouthpiece to Prevent Drunk Driving

2009-04-20
2009-01-0638
Breath alcohol interlock systems are used in Europe and the U.S. for drunk driving offenders, and a certain effect has been revealed in the prevention of drunk driving. Nevertheless, problems remain to be solved with commercialized detectors, i.e., a person taking the breath alcohol test must strongly expire to the alcohol detector through a mouthpiece for every test, more over the determination of the breath alcohol concentration requires more than 5 seconds. The goal of this research is to develop a device that functions suitable and unobtrusive enough as the interlock system. For this purpose, a new alcohol detector, which does not require a long and hard blowing to the detector through a mouthpiece, has been investigated. In this paper, as a tool available on board, a contact free alcohol detector for the prevention of drunk driving has been developed.
Technical Paper

Development of Engine Brake Control System for Commercial Vehicle with 6 Speed Automatic Transmission

2006-04-03
2006-01-1674
1 In general, the engine brake performance of a vehicle with an automatic transmission (AT) is inferior to that of a vehicle with a manual transmission (MT), without manually downshifting the transmission. Especially, in commercial vehicles having great variations in load capacity, improvements in engine brake performances are significant issues for vehicles with an AT in terms of both safety and performance. For such circumstances, Aisin Seiki has succeeded in the development of a 6-speed AT for commercial vehicles with an engine control system that enables the vehicle to decelerate according to desire of drivers in various driving conditions. An outline of the development of this control system is presented below.
Technical Paper

Analysis of Oil Consumption Mechanism by Measuring Oil Ring Radial Movement

1989-09-01
892104
Oil consumption mechanism was analyzed by measuring the radial movement of the upper side rail in a three piece type oil ring, together with the piston movement. Ultra-miniature inductive displacement sensors were designed to measure the oil ring movement and fitted on the upper side rail with a part of the 3rd land cut out. The clearance between the side rail and the cylinder wall was measured under various operating conditions. The results showed that the radial movement of the oil ring was affected by the piston movement, which results in the possibility of degrading the oil control ability for the cylinder wall because the oil ring temporarily moves with the piston. Accordingly, the designs to improve the piston movement or to be less affected by the movement proved to be an important factor for the reduction of the oil consumption.
Technical Paper

Research of Knocking Deterioration due to Accumulated Carbon Deposits on Piston Surfaces

2019-04-02
2019-01-1141
The quantity of heavy components in fuel is increasing as automotive fuels diversify, and engine oil formulations are becoming more complex. These trends result in the formation of larger amounts of carbon deposits as reaction byproducts during combustion, potentially worsening the susceptibility of the engine to knock [1]. The research described in this paper aimed to identify the mechanism that causes knocking to deteriorate due to carbon deposits in low to medium engine load ranges, which are mainly used when the vehicle drives off and accelerates. With this objective, the cylinder temperature and pressure with and without deposits were measured, and it was found that knocking deteriorates in a certain range of ignition timing.
X