Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Improvement in Vehicle Motion Performance by Suppression of Aerodynamic Load Fluctuations

2015-04-14
2015-01-1537
This study focuses on fluctuations in the aerodynamic load acting on a hatchback car model under steady-state conditions, which can lead to degeneration of vehicle motion performance due to excitation of vehicle vibrations. Large eddy simulations were first conducted on a vehicle model based on a production hatchback car with and without additional aerodynamic devices that had received good subjective assessments by drivers. The numerical results showed that the magnitudes of the lateral load fluctuations were larger without the devices at Strouhal numbers less than approximately 0.1, where surface pressure fluctuations indicated a negative correlation between the two sides of the rear end, which could give rise to yawing and rolling vibrations. Based on the numerical results, wind-tunnel tests were performed with a 28%-scale hatchback car model.
Journal Article

Modeling of Transient Aerodynamic Forces based on Crosswind Test

2016-04-05
2016-01-1577
The aerodynamic stability of energy-saving, lightweight, and low-drag vehicles is reduced by crosswind disturbances. In particular, crosswinds cause unsteady motion in vehicles with low-drag body shapes due to aerodynamic yaw moment. To verify fluctuations in the unsteady aerodynamic forces of a vehicle, a direct measurement method of these forces in a crosswind test was established using inertial force and tire load data. The former uses an inertia sensor comprised of a gyro, acceleration sensor, and GPS sensor, and the latter uses a wheel force sensor. Noise in the measurement data caused by the natural frequency of the tires was reduced using a spectral subtraction method. It was confirmed that aerodynamic data measured in the crosswind test corresponded to wind tunnel test data. Numerical expressions were defined to model the unsteady aerodynamic forces in a crosswind.
Journal Article

Typical Velocity Fields and Vortical Structures around a Formula One Car, based on Experimental Investigations using Particle Image Velocimetry

2016-04-05
2016-01-1611
This paper presents typical flow structures around a 60%-scale wind-tunnel model of a Formula One (F1) car, using planar particle image velocimetry (PIV). The customized PIV system is permanently installed in a wind tunnel to help aerodynamicists in the development loop. The PIV results enhance the understanding of the mean velocity field in the two-dimensional plane in some important areas of the car, such as the front-wheel wake and the underfloor flow. These real phenomena obtained in the wind tunnel also help maintain the accuracy of simulations using computational fluid dynamics (CFD) by allowing regular checking of the correlation with the real-world counterpart. This paper first surveys recent literature on unique flow structures around the rotating exposed wheel, mostly that on the isolated wheel, and then gives the background to F1 aerodynamics in the late 2000s.
Journal Article

Improvement of Ride Comfort by Unsprung Negative Skyhook Damper Control Using In-Wheel Motors

2016-04-05
2016-01-1678
Vehicles equipped with in-wheel motors (IWMs) are capable of independent control of the driving force at each wheel. These vehicles can also control the motion of the sprung mass by driving force distribution using the suspension reaction force generated by IWM drive. However, one disadvantage of IWMs is an increase in unsprung mass. This has the effect of increasing vibrations in the 4 to 8 Hz range, which is reported to be uncomfortable to vehicle occupants, thereby reducing ride comfort. This research aimed to improve ride comfort through driving force control. Skyhook damper control is a typical ride comfort control method. Although this control is generally capable of reducing vibration around the resonance frequency of the sprung mass, it also has the trade-off effect of worsening vibration in the targeted mid-frequency 4 to 8 Hz range. This research aimed to improve mid-frequency vibration by identifying the cause of this adverse effect through the equations of motion.
Journal Article

Development of Test Method to Evaluate Aggressiveness Focusing on Stiffness and Interaction: Part 2

2011-04-12
2011-01-0547
Test methods to evaluate vehicle compatibility are being studied worldwide. Compatibility performance is central in securing mutual protection in collisions between large and small vehicles. To consider compatibility performance, good structural interaction and stiffness matching are important. A test method using a novel moving deformable barrier (MDB) was developed to evaluate compatibility performance that includes consideration of both structural interaction and stiffness matching. This new barrier has the following features to represent an offset vehicle-to-vehicle collision with a compact car. The barrier width is divided at the lower rail position of the compact car, and the layer that simulates the characteristics of vehicle sections toward the interior is harder than the outward layer. This varying stiffness of the MDB helps simulate the horizontal interaction performance that occurs in real-world crashes.
Journal Article

Development of iQ with CVT for USA

2011-04-12
2011-01-1425
TOYOTA has developed the iQ with a 1.3L engine for the Scion brand in USA. Due to the importance of fun-to-drive factor for the Scion brand image, a responsive driving performance is required even with compact packaging and a small engine. In addition, because of the recent attention to global-warming and energy issues on a global scale, development of vehicles with high fuel economy is one of the most important issues for a car manufacturer. Therefore, it is necessary for a vehicle to have both high driving performance and fuel economy. TOYOTA has adopted the CVT-i as the transmission for this purpose. The following were achieved by adopting the CVT-i as the transmission for the iQ(1.3L). 1 Responsive driving performance with shift changes without a time lag. 2 Compact transmission for efficient vehicle packaging 3 Class-leading fuel economy performance. Moreover, it was developed with adjustments for the US market by improving the shift schedule for a linear acceleration feel.
Technical Paper

Analysis of Personal Routing Preference from Probe Data in Cloud

2020-04-14
2020-01-0740
Routing quality always dominates the top 20% of in vehicle- navigation customer complaints. In vehicle navigation routing engines do not customize results based on customer behavior. For example, some users prefer the quickest route while some prefer direct routes. This is because in vehicle navigation systems are traditionally embedded systems. Toyota announced that new model vehicles in JP, CN, US will be connected with routing function switching from the embedded device to the cloud in which there are plenty of probe data uploaded from the vehicles. Probe data makes it possible to analyze user preferences and customize routing profile for users. This paper describes a method to analyze the user preferences from the probe data uploaded to the cloud. The method includes data collection, the analysis model of route scoring and user profiling. Furthermore, the evaluation of the model will be introduced at the end of the paper.
Journal Article

Development of a Test Method to Evaluate both Stiffness and Interaction of Compatibility Performance

2008-04-14
2008-01-0816
Compatibility is important in order to secure mutual protection in collisions between large and small vehicles. To enhance compatibility, good structural interaction and stiffness matching are important elements. This paper proposes a test method that uses a moving deformable barrier (MDB) to evaluate compatibility performance that includes not only structural interaction but also stiffness matching. This new deformable barrier is aimed at the simulation of offset Vehicle-to-Vehicle collisions with compact vehicles. This simulation is based on real world crash research, and takes into account three separate load interactions between the impacting vehicles. These areas of interaction include the impacting vehicle's power unit to the opposing vehicle's wheel, the impacting vehicle's lower rail to the opposing vehicle's lower rail, and the impacting vehicle's wheel to the opposing vehicle's power unit.
Technical Paper

Development of a New High Orientation Paint System to Achieve Outstanding Real Metallic Designs

2020-04-14
2020-01-0899
Silver metallic colors with thin and smooth aluminum flake pigments have been introduced for luxury brand OEMs. Regarding the paint formulation for these types of colors, low non-volatile(NV) and high aluminum flake pigment contents are known as technology for high metallic appearance designs. However, there are two technical concerns. First is mottling which is caused by uneven distribution of the aluminum flake pigments in paint film and second is poor film property due to high aluminum pigment concentration in paint film. Therefore, current paint systems have limitation of paint design. As a countermeasure for those two concerns, we had investigated cellulose nanofiber (CNF) dispersion liquid as both the coating binder and rheology control agent in a new type of waterborne paint system. CNF is an effective rheology control agent because it has strong hydrogen bonds with other fiber surfaces in waterborne paint.
Technical Paper

Experimental Analysis of Acoustic Coupling Vibration of Wheel and Suspension Vibration on Tire Cavity Resonance

2007-05-15
2007-01-2345
It is difficult to improve tire cavity noise since the pressure of cavity resonance acts as a compelling force, and its low damping and high gain characteristics dominate the vibration of both the suspension and body. For this reason, the analysis described in this article aimed to clarify the design factors involved and to improve this phenomenon at the source. This was accomplished by investigating the acoustic coupling vibration mode of the wheel, which is the component that transmits the pressure of cavity resonance at first. In addition, the vibration characteristic of suspension was investigated also. A speaker-equipped sound pressure generator inside the tire and wheel assembly was developed and used to infer that wheel vibration under cavity resonance is a forced vibration mode with respect to the cavity resonance pressure distribution, not an eigenvalue mode, and this phenomenon may therefore be improved by optimizing the out-of-plane torsional stiffness of the disk.
Technical Paper

JCAPII Cross Check Tests of Fast Electrical Mobility Spectrometers for Evaluation of Accuracy

2007-10-29
2007-01-4081
Crosscheck tests of fast electrical mobility spectrometers, Differential Mobility Spectroscopy (DMS) and Engine Exhaust Particle Sizer(EEPS), were conducted to evaluate the accuracy of fine particle measurement. Two kinds of particles were used as test particles for the crosscheck test of instruments: particles emitted from diesel vehicles and diluted in a full dilution tunnel, and particles generated by CAST. In the steady state tests, it was confirmed that the average concentration of each instrument was within the range of ±2σ from the average concentration of all the same type of instruments. In the transient tests, it is verified that the instruments have almost equal sensitivity. For application of the fast electrical mobility spectrometers to evaluation of particle number and size distributions, it is essential to develop a calibration method using reference particle counters and sizers (CPC, SMPS, etc.) and maintenance methods appropriate for each model.
Technical Paper

Exhaust Emissions Simulator for Verification of Extremely Low Emission Measurement Systems

2007-04-16
2007-01-0316
With the support of Horiba and Horiba STEC, Toyota Motor Corporation has developed an exhaust emissions simulator to verify the accuracy of extremely low emissions measurement systems. It can reliably verify the accuracy (correlation) of each SULEV emission measurement system to within 5% under actual conditions. The simulator's method of simulating SULEV gasoline engine cold-start emissions is to inject bottled gases with known concentrations of each emission constituent to the base gas, which is clean exhaust gas from a SULEV vehicle with new fully warmed catalysts. First, the frequencies and dynamic ranges of the SULEV cold-start emissions were analyzed and the method of 2 injecting the bottled gases was considered based on the results of that analysis. A high level of repeatability and accuracy was attained for all injection flow ranges in the SULEV cold-start emission simulation by switching between high-response digital Mass Flow Controllers (MFCs) of different full scales.
Technical Paper

Development of Robust Design Method in Pedestrian Impact Test

2007-04-16
2007-01-0881
This paper describes that a method has been developed to estimate the range of the scatter of Head Injury Criterion (HIC) values in pedestrian impact tests, which could help to reduce the range of the scatter of HIC values by applying the stochastic method for Finite Element (FE) analysis. A major advantage of this method is that it enables the range of scatter of HIC values to be estimated and to explain the mechanics of the behavior. The test procedure of pedestrian impact allows some tolerances for the resultant conditions of impact such that the distance of actual impact location from the selected point is within 10 mm and the impact velocity is within ±0.7 km/h [1]. A HIC value calculated by impact simulation under a deterministic impact condition with the nominal input data does not necessarily represent the variation of measured data in impactor tests.
Technical Paper

Development of Suspension Design Technology Applying Principal Elastic Axes

2007-04-16
2007-01-0857
Automobile manufacturers have increased the pace of vehicle development in recent years to respond to diverse market demands. Consequently, it has become crucial for manufacturers to develop new technology which enables a particular vehicle to simultaneously achieve both ride comfort and handling performance at an optimal level. This article introduces the suspension design technology applying the Principal Elastic Axes that has been developed by our company for use in its vehicles. These axes, which consist of three translational and three rotational axes, represent the set of fully decoupled stiffness axes. Applying the Principal Elastic Axes to the suspension reduces the number of design parameters, which enables suspension movements to be considered totally and simply.
Technical Paper

Method for Prediction of Engine Oil Aeration Rate

2008-04-14
2008-01-1361
Due to the advancement of engine performance, large volumes of oil circulate within a narrow internal space of passenger car engines. This phenomenon often leads to oil foaming and aeration problems. In this study, we developed a method for predicting the rate of engine oil aeration from specific engine parameters and running conditions. Engine tests show that the rate of oil aeration is stable throughout the process between bubble release from the oil surface and aeration. Additionally, bubble size affects its release rate from the oil surface. Utilizing both of these assumptions, our prediction method calculates aeration rate by evaluating bubble number and size.
Technical Paper

A Comparison of Methods for Evaluating Automatic Transmission Fluid Effects on Friction Torque Capacity - A Study by the International Lubricant Standardization and Approval Committee (ILSAC) ATF Subcommittee

1998-10-19
982672
As part of the International Lubricant Standardization and Approval Committee's (ILSAC) goal of developing a global automatic transmission fluid (ATF) specification, members have been evaluating test methods that are currently used by various automotive manufacturers for qualifying ATF for use in their respective transmissions. This report deals with comparing test methods used for determining torque capacity in friction systems (shifting clutches). Three test methods were compared, the Plate Friction Test from the General Motors DEXRON®-III Specification, the Friction Durability Test from the Ford MERCON® Specification, and the Japanese Automotive Manufacturers Association Friction Test - JASO Method 348-95. Eight different fluids were evaluated. Friction parameters used in the comparison were breakaway friction, dynamic friction torque at midpoint and the end of engagement, and the ratio of end torque to midpoint torque.
Technical Paper

Oxidation Stability of Automatic Transmission Fluids -A Study by the International Lubricants Standardization and Approval Committee (ILSAC) ATF Subcommittee

2001-05-07
2001-01-1991
The International Lubricant Standardization and Approval Committee (ILSAC) ATF subcommittee members have compared the two oxidation bench test methods, Aluminum Beaker Oxidation Test (ABOT) and Indiana Stirring Oxidation Stability Test (ISOT), using a number of factory-fill and service-fill ATFs obtained in Japan and in the US. In many cases, the ATFs were more severely oxidized after the ABOT procedure than after the same duration of the ISOT procedure. The relative severity of these two tests was influenced by the composition of the ATFs. The bench test oxidation data were compared with the transmission and the vehicle oxidation test data.
Technical Paper

New Frictional Testing Method for Stamping Formability - Development of Dr. STAMP (Direct & Rapid, Surface Tribology Analyzing Method for Press) Method -

2003-10-27
2003-01-2812
Galvannealed steel sheet (GA) is very extensively used for vehicle panels. However ζ-phase (FeZn13) in GA coat causes poor stamping formability. Previously, there were no easy methods to evaluate the influence of ζ-phase on the frictional characteristics other than the X-ray diffraction method. This study will discuss the development of a new testing method: Dr. STAMP Method that is both efficient and convenient with pin-on-disc tester.
Technical Paper

A SEA-Based Optimizing Approach for Sound Package Design

2003-05-05
2003-01-1556
Statistical Energy Analysis (SEA) is a promising tool for developing an efficient sound package design for reducing airborne interior noise at high frequencies. The optimal sound package, however, is not directly predicted by using the SEA vehicle model alone and therefore requires parametric studies of sound package configurations. This paper describes an effective method for using SEA modeling to achieve the desired interior noise level targets. A mathematical model, expressed by one equation, is derived on the assumption that the directions of the power flows are known in the SEA model. This equation describes the relationship between sound package properties and the resulting interior noise level. Using the relationship between weight and performance of sound package, an efficient configuration can be determined. The predicted sound pressure level of the vehicle interior with the optimized sound package correlated well to the experimental data for the case presented in this paper.
Technical Paper

Spatio-Temporal Frequency Characteristics Measurement of Contrast Sensitivity for Smart Lighting

2016-04-05
2016-01-1420
This study aims at the development of a projection pattern that is capable of shortening the time required by a driver to perceive a pedestrian at night when a vehicle’s high beams are utilized. Our approach is based on the spatio-temporal frequency characteristics of human vision. Visual contrast sensitivity is dependent on spatiotemporal frequency, and maximum contrast sensitivity frequency varies depending on environmental luminance. Conventionally, there are several applications that utilize the spatio-temporal frequency characteristics of human vision. For example, the National Television System Committee (NTSC) television format takes into consideration low-sensitivity visual characteristics. In contrast, our approach utilizes high-sensitivity visual characteristics based on the assumption that the higher contrast sensitivity of spatio-temporal frequencies will correlate more effectively with shorter perception times.
X