Refine Your Search

Topic

Author

Search Results

Video

Toyota's Comprehensive Environmental Technology: Providing Choices for Sustainable Mobility

2011-11-04
In the pursuit of a sustainable transportation systems, Toyota is considering a comprehensive approach pursuing multiple advanced technologies to address three primary issues: GHG, Petroleum Use, and Air Quality. Vehicles must be ready for and affordable to the mass market to provide the customer choices to meet their transportation needs whether it is EV's, Hybrids, Plug-In Hybrids or Fuel Cell Hydrogen Hybrids. Our studies have shown that EVs have the potential to provide significant improvements in energy utilization especially combined with other advanced technologies. Toyota believes that a combination of these technolgies will provide complementary solution that enables a sustainable transportation system. Presenter Takehito Yokoo, Toyota Motor Corporation
Journal Article

Experimental Demonstration of Smart Charging and Vehicle-to-Home Technologies for Plugin Electric Vehicles Coordinated with Home Energy Management Systems for Automated Demand Response

2016-04-05
2016-01-0160
In this paper, we consider smart charging and vehicle-to-home (V2H) technologies for plugin electric vehicles coordinated with home energy management systems (HEMS) for automated demand response. In this system, plugin electric vehicles automatically react to demand response events with or without HEMS’s coordination, while vehicles are charged and discharged (i.e., V2H) in appropriate time slots by taking into account demand response events, time-ofuse rate information, and users’ vehicle usage plan. We introduce three approaches on home energy management: centralized energy control, distributed energy control, and coordinated energy control. We implemented smart charging and V2H systems by employing two sets of standardized communication protocols: one using OpenADR 2.0b, SEP 2.0, and SAE standards and the other using OpenADR 2.0b, ECHONET Lite, and ISO/IEC 15118.
Journal Article

A Study on Optimal Powertrain Sizing of Plugin Hybrid Vehicles for Minimizing Criteria Emissions Associated with Cold Starts

2018-04-03
2018-01-0406
Plugin hybrid electric vehicles (PHEVs) have several attractive features in terms of reduction of greenhouse gas (GHG) emissions. Compared to conventional vehicles (CVs) that only have an internal combustion engine (ICE), PHEVs have better energy efficiency like regular hybrids (HEVs), allow for electrifying an appreciable portion of traveled miles, and have no range anxiety issues like battery-only electric vehicles (BEVs). However, in terms of criteria emissions (e.g., NOx, NMOG, HC), it is unclear if PHEVs are any better than HEVs or CVs. Unlike GHG emissions, criteria emissions are not continuously emitted in proportional quantities to fossil fuel consumption. Rather, the amount and type of criteria emissions is a rather complex function of many factors, including type of fuel, ICE temperature, speed and torque, catalyst temperature, as well as the ICE controls (e.g., fuel-to-air ratio, valve and ignition timing).
Journal Article

Development of New Electronically Controlled Hydraulic Unit for Various Applications

2016-04-05
2016-01-1660
The use of hybrid, fuel cell electric, and pure electric vehicles is on the increase as part of measures to help reduce exhaust gas emissions and to help resolve energy issues. These vehicles use regenerative-friction brake coordination technology, which requires a braking system that can accurately control the hydraulic brakes in response to small changes in regenerative braking. At the same time, the spread of collision avoidance support technology is progressing at a rapid pace along with a growing awareness of vehicle safety. This technology requires braking systems that can apply a large braking force in a short time. Although brake systems that have both accurate hydraulic control and large braking force have been developed in the past, simplification is required to promote further adoption.
Journal Article

High Efficiency Electromagnetic Torque Converter for Hybrid Electric Vehicles

2016-04-05
2016-01-1162
A new concept of an electromagnetic torque converter for hybrid electric vehicles is proposed. The electromagnetic torque converter, which is an electric system comprised of a set of double rotors and a stator, works as a high-efficiency transmission in the driving conditions of low gear ratio including a vehicle moving-off and as a starting device for an internal combustion engine. Moreover, it can be used for an electric vehicle driving as well as for a regenerative braking. In this concept, a high-efficiency drivetrain system for hybrid electric vehicles is constructed by replacing a fluid-type torque converter with the electromagnetic torque converter in the automatic transmission of a conventional vehicle. In this paper, we present the newly developed electromagnetic torque converter with a compact structure that enables mounting on a vehicle, and we evaluate its transmission efficiency by experiment.
Journal Article

Technical Development of Electro Magnetic Compatibility for Plug-in Hybrid Vehicle / Electric Vehicle Using Wireless Power Transfer System

2016-04-05
2016-01-1161
In 2007, researchers at the Massachusetts Institute of Technology successfully completed a Wireless Power Transfer (WPT) experiment. Ever since, interest in WPT has been growing. At Toyota, we have been developing the underlying technology of a WPT system. Simultaneously we have been working with regulatory committees to create a standard for WPT. In particular, there are concerns that WPT’s radiated emissions could cause harm to humans and the neighboring electronic equipment. There are many challenges that need to be overcome, but a key concern is understanding WPT’s electromagnetic compatibility (EMI: Electro-Magnetic Interference and EMF: Electro-Magnetic Field). In this paper, we show the technical issues, the evaluation method, and the development status of EMI and EMF on PHVs/EVs when using WPT. For Electromagnetic interference (EMI) performance, we investigated both an open area test site and an electromagnetic anechoic chamber as evaluation environments.
Technical Paper

Classification of Time Series Measurement Data for Shift Control of Automatic Transmission of Vehicles Using Machine Learning Techniques

2020-04-14
2020-01-0260
An efficient approach to classify time series physical measurement data of shift control of automatic transmission for vehicles is presented. Comfortable acceleration is the essential factor of today’s vehicles. Shift control of automatic transmission of vehicles directly contributes to the comfortable acceleration. Since calibration of automatic transmission of vehicles is time consuming task for expert engineers, the development of autonomous calibration is desired to reduce product development period in today’s competitive automobile market. In the stage of product development, it is difficult to obtain a large amount of physical measurement data. Therefore, we need to develop machine learning method for limited amount of data. For this purpose, we develop the method to classify time series measurement data of shift control of automatic transmission of vehicles. We use support vector machine (SVM) as a machine learning technique.
Technical Paper

Toyota's New Six-Speed Automatic Transmission AB60E for RWD Vehicles

2007-04-16
2007-01-1098
Toyota Motor Corporation has developed a new six-speed automatic transmission AB60E for longitudinal front engine rear wheel drive (RWD) vehicles. This transmission development was aimed at an improvement of power performance and fuel economy, while achieving a lightweight, compact package and a high torque capacity. In order to achieve this target, a high-capacity ultra-flat torque converter, a highly-rigid transmission case, and an ATF warmer with a valve to switch ATF circuits to an air-cooled ATF cooler have been newly developed. Moreover, a new transmission mode control logic “TOW / HAUL” has been developed to improve power performance and driveability during trailer towing. This automatic transmission has adopted the same gear train and hydraulic control system as the conventional six-speed automatic transmission A760E. This paper describes the structure, major features and performance of the transmission in detail.
Technical Paper

Toyota's World First 8-Speed Automatic Transmission for Passenger Cars

2007-04-16
2007-01-1101
TOYOTA has developed the world's first eight-speed automatic transmission (AA80E) for front-engine, rear-drive passenger cars. The AA80E developed for high-torque engines raises the level of power performance and fuel efficiency. To meet the size requirements needed for mounting in a passenger car application, an 8-speed geartrain, torque converter, transmission case and hydraulic control device were all newly-developed. Furthermore, the AA80E has benefited from technical developments to achieve an extremely high level of quietness and shifting performance. In this paper, the details of the AA80E are introduced.
Technical Paper

Toyota AA80E 8-Speed Automatic Transmission with Novel Powertrain Control System

2007-04-16
2007-01-1311
Toyota has developed the world's first 8-speed automatic transmission (AA80E) for RWD automobiles. The transmission will first be used in the all-new Lexus LS460. In addition, a novel control system has been developed to maximize the predictability, response, efficiency, and initial quality of the powertrain while utilizing the high number of gear steps.
Technical Paper

Innovative and Creative Development-Voice Navigation System

1998-10-19
98C002
Aisin AW Co., Ltd. was established in 1969 from Japanese and American investment as a new company specializing in automatic transmission (AT) manufacture. Aiming to reach and overtake the Western advanced technology while "pursuing the essence of the role of ATs within the whole vehicle system", it has since achieved its goal of becoming the world's No. 1 AT manufacturing company. In 1985, Aisin AW established a research and development lab for the development for new products other than ATs. Operating under the motto of creating a single, attractive basic design concept layout while "pursuing the essence of the role of the vehicle within society", this lab developed the world's first voice navigation system (VNS), an innovative, creative product born from our company's exclusive product concept. Aisin AW is now achieving the biggest share of the vehicle navigation system market in Japan
Technical Paper

Development of New Sports Shift Control System for Toyota's Automatic Transmission

2008-04-14
2008-01-0535
Toyota has developed a new sports shift control system introduced in the world's first eight-speed automatic transmission (AA80E), which is implemented in the “LS 460” and has been adopted in the “IS F” (upcoming 2008 model). This enables the IS F to be a vehicle that also permits the enjoyment of driving on circuits as well as achieving that “fun-to-drive” image. In sports driving, as achieved by the conventional torque converter-type automatic transmissions, shift response performance for shift operation and linearity performance for accelerator operations were challenges to tackle. On the contrary, the newly developed sports shift control system has resolved these challenges and enables the IS F to be capable of responding to a driver's intention quickly and accurately, letting the driver truly experience satisfaction.
Technical Paper

A Comparison of Methods for Evaluating Automatic Transmission Fluid Effects on Friction Torque Capacity - A Study by the International Lubricant Standardization and Approval Committee (ILSAC) ATF Subcommittee

1998-10-19
982672
As part of the International Lubricant Standardization and Approval Committee's (ILSAC) goal of developing a global automatic transmission fluid (ATF) specification, members have been evaluating test methods that are currently used by various automotive manufacturers for qualifying ATF for use in their respective transmissions. This report deals with comparing test methods used for determining torque capacity in friction systems (shifting clutches). Three test methods were compared, the Plate Friction Test from the General Motors DEXRON®-III Specification, the Friction Durability Test from the Ford MERCON® Specification, and the Japanese Automotive Manufacturers Association Friction Test - JASO Method 348-95. Eight different fluids were evaluated. Friction parameters used in the comparison were breakaway friction, dynamic friction torque at midpoint and the end of engagement, and the ratio of end torque to midpoint torque.
Technical Paper

AISIN AW New Six-Speed Automatic Transmission for FWD Vehicles

2004-03-08
2004-01-0651
AISIN AW has developed a six-speed automatic transmission TF-60SN for front wheel drive (FWD) vehicles. This new TF-60SN has been developed based on the concepts of minimizing length and mass increase as compared with current five-speed automatic transmissions, and providing the world's first transverse FWD six-speed automatic transmission. This has been accomplished using a newly developed planetary gear set, and a new “squeezed” torque converter. In addition, the control system features a unique design that maintains outstanding compactness and achieves a high quality smooth shift feeling. This paper describes the construction, characteristics, and functions of this six-speed automatic transmission.
Technical Paper

New Five-Speed Automatic Transmission for FWD Vehicles

2001-03-05
2001-01-0871
AISIN AW has developed a five-speed automatic transmission “55-50SN” for front wheel drive (FWD) vehicles. This new 55-50SN has been developed with a concept to minimize length and mass increase compared with the current four-speed automatic transmission, and is one of the most compact five-speed automatic transmissions in the world. This has been accomplished by newly developed planetary gear sets, a new differential, and a new squeezed torque converter. In addition, the control system is made by a unique design to maintain the excellent compactness and to achieve a high quality smooth shift feeling. This paper describes the construction, characteristic, and function of this five-speed automatic transmission.
Technical Paper

Oxidation Stability of Automatic Transmission Fluids -A Study by the International Lubricants Standardization and Approval Committee (ILSAC) ATF Subcommittee

2001-05-07
2001-01-1991
The International Lubricant Standardization and Approval Committee (ILSAC) ATF subcommittee members have compared the two oxidation bench test methods, Aluminum Beaker Oxidation Test (ABOT) and Indiana Stirring Oxidation Stability Test (ISOT), using a number of factory-fill and service-fill ATFs obtained in Japan and in the US. In many cases, the ATFs were more severely oxidized after the ABOT procedure than after the same duration of the ISOT procedure. The relative severity of these two tests was influenced by the composition of the ATFs. The bench test oxidation data were compared with the transmission and the vehicle oxidation test data.
Technical Paper

Electro-Hydraulic Control System for AISIN AW New 6-Speed Automatic Transmission

2004-03-08
2004-01-1638
Recently, 5-speed automatic transmissions have become mainstream through the world, and 6-speed automatic transmissions have also been introduced in the market. Consequently, the issue of shift control is gaining importance, and a trend toward increasing number of gears in automatic transmissions has become apparent. On the other hand, weight saving and downsizing of the transmission, including the hydraulic control unit, are strongly required in order to promote fuel efficiency. To meet these requirements, an electro-hydraulic control unit offering sophisticated functionality desired in order to provide excellent shift quality. As an answer to these requirements AISIN AW developed two types of new 6-speed automatic transmissions in 2002: “TR-60SN” for RWD vehicles and “TF-60SN” for FWD vehicles. Both TR-60SN and TF-60SN have the same structural characteristics.
Technical Paper

Toyota Five-Speed Automatic Transmission with Application of Modern Control Theory

1992-02-01
920610
A compact and high-performance five-speed automatic transmission(A350E) has been developed for passenger cars. The development of this transmission has been aimed at improvement in acceleration performance in the low and medium speed range and at smooth acceleration. A five-speed automatic transmission with a simple gear train has been completed by means of the industry's first modern control theory aided shifting technique.
Technical Paper

Efficient Heat Pump System for PHEV/BEV

2017-03-28
2017-01-0188
As vehicle emission regulations become increasingly rigorous, the automotive industry is accelerating the development of electrified vehicle platforms such as Battery Electric Vehicles (BEV) and Plug-in Hybrid Electric Vehicles (PHEV). Since the available waste heat from these vehicles is limited, additional heat sources such as electric heaters are needed for cabin heating operation. The use of a heat pump system is one of the solutions to improve EV driving range at cold ambient conditions. In this study, an efficient gas-injection heat pump system has been developed, which achieves high cabin heating performance at low ambient temperature and dehumidification operation without the assistance of electric heaters in ’17 model year Prius Prime.
Technical Paper

New Combustion and Powertrain Control Technologies for Fun-to-Drive Dynamic Performance and Better Fuel Economy

2017-03-28
2017-01-0589
Toyota Motor Corporation has developed a new series of engines under the Toyota New Global Architecture (TNGA) design philosophy, which aims to satisfy customer requirements for both fun-to-drive dynamic performance and better fuel economy by adopting a high-speed combustion concept to improve thermal efficiency and specific power. This new engine series achieves a maximum engine thermal efficiency of 40%, a specific power ratio of 60 kW/l, and lower emissions by combining high-speed combustion and a high compression ratio with a high-tumble intake port, high-energy ignition coil, high-pressure multi-hole nozzle direct injector, and new electrical variable valve timing (VVT). The first engine in this series is a new 4-cylinder 2.5-liter gasoline naturally aspirated engine for use in passenger cars alongside a new TNGA 8-speed automatic transmission, which was introduced for minivans and SUVs in the U.S. market in 2016.
X