Refine Your Search

Topic

Author

Search Results

Journal Article

High Efficiency Electromagnetic Torque Converter for Hybrid Electric Vehicles

2016-04-05
2016-01-1162
A new concept of an electromagnetic torque converter for hybrid electric vehicles is proposed. The electromagnetic torque converter, which is an electric system comprised of a set of double rotors and a stator, works as a high-efficiency transmission in the driving conditions of low gear ratio including a vehicle moving-off and as a starting device for an internal combustion engine. Moreover, it can be used for an electric vehicle driving as well as for a regenerative braking. In this concept, a high-efficiency drivetrain system for hybrid electric vehicles is constructed by replacing a fluid-type torque converter with the electromagnetic torque converter in the automatic transmission of a conventional vehicle. In this paper, we present the newly developed electromagnetic torque converter with a compact structure that enables mounting on a vehicle, and we evaluate its transmission efficiency by experiment.
Technical Paper

A Study of Mechanism of Engine Idling Rattle Noise in Hybrid Transaxles

2020-04-14
2020-01-0421
Quietness is one of the most important characteristics for Hybrid Electric Vehicle quality. Reduction of the rattle noise caused by the torque fluctuation of an internal combustion engine can contribute to get a customer satisfaction. Toyota Hybrid System(THS) also has same requirement. Especially, the rattle noise during idling may happen discontinuously despite of periodical engine combustion excitation. It is necessary to study the mechanism and reduce the rattle noise. At lower engine torque range, decreasing the torsional damper’s stiffness can improve this condition as the manual transaxle done. However, the rattle noise can occur easily in conditions of relatively large torque spike inputs to the torsional system, such as the engine start/stop function of THS using the motor/generator in the transaxle.
Journal Article

Benefit Estimation of a Lane Departure Warning System using ASSTREET

2012-04-16
2012-01-0289
It is known that the collisions caused by lane departure events account for range of percentages among the countries studied. To help prevent such collisions, the Lane Departure Warning (LDW) system has started to be introduced in production vehicles, but there is little research on its benefits and limitations so far. In this paper we performed an in-depth analysis of the collisions and driver-related essential variables for the lane-departure collision scenarios and demonstrated the benefit estimation process. The benefit of the LDW system is estimated by comparing lane departure events when the vehicle has no LDW, and how they change with the addition of LDW. The event without LDW was modeled in 5 phases: (1) before departure, (2) starting of the departure, (3) departed the lane, (4) at the impact with an object, and, (5) after the impact. “An extensive analysis was conducted of traffic crash data compiled by the Institute for Traffic Accident Research and Data Analysis (ITARDA).
Technical Paper

Analysis of Personal Routing Preference from Probe Data in Cloud

2020-04-14
2020-01-0740
Routing quality always dominates the top 20% of in vehicle- navigation customer complaints. In vehicle navigation routing engines do not customize results based on customer behavior. For example, some users prefer the quickest route while some prefer direct routes. This is because in vehicle navigation systems are traditionally embedded systems. Toyota announced that new model vehicles in JP, CN, US will be connected with routing function switching from the embedded device to the cloud in which there are plenty of probe data uploaded from the vehicles. Probe data makes it possible to analyze user preferences and customize routing profile for users. This paper describes a method to analyze the user preferences from the probe data uploaded to the cloud. The method includes data collection, the analysis model of route scoring and user profiling. Furthermore, the evaluation of the model will be introduced at the end of the paper.
Technical Paper

Noise and Vibration Reduction Technology in the Development of Hybrid Luxury Sedan with Series/Parallel Hybrid System

2007-05-15
2007-01-2232
For a luxury sedan, quietness is a major selling point, and a hybrid luxury sedan is expected to be especially quiet. Therefore, in the development of the hybrid luxury sedan, every possible effort is needed to reduce the hybrid system noise in order to ensure a level of quietness far superior to that of an ordinary gasoline-powered vehicle. In addition, the noise and vibration phenomena that are particular to vehicles with longitudinal power trains require special reduction technologies. This paper first describes the superior quietness of hybrid luxury vehicles in comparison with ordinary gasoline-powered vehicles. This paper then addresses the development issues of vibration during engine starting, engine booming noise, and motor noise, explaining the mechanisms by which they are generated and the technologies employed to reduce them.
Technical Paper

High-pressure Metal Hydride Tank for Fuel Cell Vehicles

2007-07-23
2007-01-2011
High-pressure metal hydride (MH) tank has been designed based on a 35 MPa cylinder vessel. The heat exchanger module is integrated into the tank. Its advantage over high-pressure cylinder vessels is its large hydrogen storage capacity, for example 9.5 kg with a tank volume of 180 L by Ti25Cr50V20Mo5 alloy. Cruising range is about 900 km, over 3 times longer than that of a 35 MPa cylinder vessel system with the same volume. The hydrogen-charging rate of this system is equal to the 35 MPa cylinders without any external cooling facility. And release of hydrogen at 243 K is enabled due to the use of hydrogen-absorbing alloy with high-dissociation pressure, for example Ti35Cr34Mn31 alloy.
Technical Paper

Study on the Potential Benefits of Plug-in Hybrid Systems

2008-04-14
2008-01-0456
There is ever increasing interest in the issues of fossil fuel depletion, global warming, due to increased atmospheric CO2, and air pollution, all of which are due in some extent to transportation, including automobiles. Hybrid Vehicles (HVs), whose performance and usage are equivalent to existing conventional vehicles, attract lots of attention and have started to come into wider use. Meanwhile, EVs have been considered by many as the best solution for the issues mentioned above. But the technical difficulty of battery energy density is an obstruction to successful implementation. Currently the Plug-in HV (PHEV), which combines the advantages of HV and EV, is being considered as one promising solution. PHEVs can be categorized into two types, according to operating modes. The first uses battery stored energy initially, only stating the internal combustion engine when the battery is depleted. This we call the All Electric Range (AER) system.
Technical Paper

Development of Direct and Fast Response Gas Measurement

2008-04-14
2008-01-0758
Due to regulations for even lower levels of pollutants in exhaust gas, development of advanced combustion techniques and increasingly efficient catalysts has become more crucial than ever. One of the essential technologies to achieve this goal is an advanced measurement method, which can detect the characteristics of exhaust gas, such as temperature and chemical compositions, in real-time to clarify their reaction mechanisms. A direct and fast response (1ms) measurement technique was developed based on diode laser absorption spectroscopy and applied to practical engine exhaust measurement to prove the validity of this technology for various applications such as clarification of engine start phenomena and improvement of EGR controls.
Technical Paper

Development of Lithium-Ion Battery for Vehicles

2004-03-08
2004-01-0066
We developed a high performance automotive lithium-ion battery and applied it to our new Toyota Intelligent Idling Stop System. This hybrid power management system has been introduced in the “intelligent package” of Toyota Vitz vehicles sold in Japan. The lithium-ion battery is installed under the seat on the passenger-side. The battery supplies electric power to the auxiliary electrical systems during the “idling stop” mode, and when restarting the engine. The main requirements of this battery are to supply high electric power output even at low temperatures and at the same time, maintain continuous power during charge and discharge cycling, and have long storage life. This performance has been accomplished successfully through a series of improvements in battery materials and structures.
Technical Paper

Development of Next Generation Fuel-Cell Hybrid System - Consideration of High Voltage System -

2004-03-08
2004-01-1304
Toyota Motor Corporation began leasing a new generation fuel cell vehicle the FCHV (Fuel Cell Hybrid Vehicle) in December 2002. That vehicle includes a new variable voltage power electronics system and uses the Nickel Metal Hydride (Ni-MH) battery system from the Prius hybrid gasoline electric vehicle. This paper describes on-going efforts to model optimum secondary storage systems for future vehicles. Efficiency modeling is presented for the base Ni-MH storage system, an ultra capacitor system and a Lithium ion (Li-ion) battery system. The Li-ion system in combination with a new high efficiency converter shows a 4% improvement in fuel economy relative to the base system. The ultra capacitor system is not as efficient as the base system.
Technical Paper

Engine Starting System Development by Belt Drive Mechanism

2002-03-04
2002-01-1086
The basic concept of the Toyota mild hybrid system is to provide a smooth and reliable engine restarting method from an idling stop, while at the same time being able to drive all of the accessories during the idling stop. This concept has been realized and marketed for the first time in the world, by utilizing a newly developed simulation of belt behavior to optimize the specification of the belt and its peripheral parts.
Technical Paper

Analysis of the Wire Bonding Joints of an IGBT Module

2003-03-03
2003-01-1352
IGBT modules used in electric and hybrid vehicles are assembled by connecting approximately 500 thick Al wires ( ϕ 400 μ m), requiring the largest scale wire bonding of any automobile part. It is accepted that the probability of cracks occurring within the IGBT chip due to damage during wire bonding is about 1 in 1,000,000. Toyota has been conducting research to clarify the cause and generation mechanism of this problem. Other companies who have also conducted investigations have reported that the cause of the problem is Si nodules resulting from Si components within the Al electrode of the chip. However, characteristics of the generation mechanism, such as the influence of surface convexity of the chip and the path by which stress sufficient to generate cracks is exerted, have not been clearly explained. In this article, the generation mechanism is examined through detailed observations of damage within the chip and analysis of stress using simulations.
Technical Paper

Techno-Economic Analysis of Solar Hybrid Vehicles Part 2: Comparative Analysis of Economic, Environmental, and Usability Benefits

2016-04-05
2016-01-1286
Introducing effective technologies to reduce carbon emissions in the transport sector is a critical issue for automotive manufacturers to contribute to sustainable development. Unlike the plug-in electric vehicles (PEVs), whose effectiveness is dependent on the carbon intensity of grid electricity, the solar hybrid vehicle (SHV) can be an alternative electric vehicle because of its off-grid, zero-emission electric technology. Its usability is also advantageous because it does not require manual charging by the users. This study aims at evaluating the economic, environmental, and usability benefits of SHV by comparing it with other types of vehicles including PEVs. By setting cost and energy efficiency on the basis of the assumed technology level in 2030, annual cost and annual CO2 emissions of each vehicle are calculated using the daily mileage pattern obtained from a user survey of 5,000 people in Japan and the daily radiation data for each corresponding user.
Technical Paper

Techno-Economic Analysis of Solar Hybrid Vehicles Part 1: Analysis of Solar Hybrid Vehicle Potential Considering Well-to-Wheel GHG Emissions

2016-04-05
2016-01-1287
In recent years, automakers have been developing various types of environmentally friendly vehicles such as hybrid (HV), plug-in hybrid (PHV), electric (EV), and fuel cell (FCV) vehicles to help reduce greenhouse gas (GHG) emissions. However, there are few commercial solar vehicles on the market. One of the reasons why automakers have not focused attention on this area is because the benefits of installing solar modules on vehicles under real conditions are unclear. There are two difficulties in measuring the benefits of installing solar modules on vehicles: (1) vehicles travel under various conditions of sunlight exposure and (2) sunlight exposure conditions differ in each region. To address these problems, an analysis was performed based on an internet survey of 5,000 people and publically available meteorological data from 48 observation stations in Japan.
Technical Paper

Verification of High Frequency SiC On-Board Vehicle Battery Charger for PHV

2016-04-05
2016-01-1210
This paper presents a new application of a vehicle on-board battery charger utilizing high frequency Silicon Carbide (SiC) power devices. SiC is one of the most promising alternatives to Silicon (Si) for power semiconductor devices due to its superior material characteristics such as lower on-state resistance, higher junction temperature, and higher switching frequency. An on-board charger prototype is developed demonstrating these advantages and a peak system efficiency of 95% is measured while operating with a switching frequency of 250 kHz. A maximum output power of 6.06 kW results in a gravimetric power density of 3.8 W/kg and a volumetric power density of 5.0 kW/L, which are about 10 times the densities compared with the current Prius Plug-In Si charger. SiC technology is indispensable to eco-friendly PHV/EV development.
Technical Paper

Development of the Li-ion Battery Cell for Hybrid Vehicle

2016-04-05
2016-01-1207
Toyota introduced the first generation Prius in 1997. The vehicle was conceived, designed and launched as a dedicated, mass-produced global hybrid vehicle platform, the first of its kind. The introduction of the 2nd and 3rd generation Prius (2003, 2009) saw vehicles with significantly improved performance, including fuel efficiency. The Prius Alpha (Japan/EU), launched in 2011, represented Toyota first foray with Li-ion battery in a strong hybrid configuration. For the Prius Alpha, the adoption of a compact Li-ion battery resulted in sufficient cabin space to allow a 3rd row of seats while maintaining high fuel efficiency. Before and after the launch of the Prius Alpha, an extensive list of tests was performed on the Li-ion battery pack, including electrical, electrochemical, mechanical, and safety. The evaluations were performed in the lab, in the field (demonstration fleets) and by acquiring vehicles used by customers.
Technical Paper

A Study of Greenhouse Gas Emissions Reduction Opportunity in Light-Duty Vehicles by Analyzing Real Driving Patterns

2017-03-28
2017-01-1162
Electric drive vehicles (EDV) have the potential to greatly reduce greenhouse gas (GHG) emissions and thus, there are many policies in place to encourage the purchase and use of gasoline-hybrid, battery, plug-in hybrid, and fuel cell electric vehicles. But not all vehicles are the same, and households use vehicles in very different ways. What if policies took these differences into consideration with the goal of further reducing GHG emissions? This paper attempts to answer two questions: i) are there certain households that, by switching from a conventional vehicle to an EDV, would result in a comparatively large GHG reduction (as compared to other households making that switch), and, if so, ii) how large is the difference in GHG reductions? The paper considers over 65,000 actual GPS trip traces (generated by one-second interval recording of the speed of approximately 2,900 vehicles) collected by the 2013 California Household Travel Survey (CHTS).
Technical Paper

Development of Toyota Plug-In Hybrid System

2011-04-12
2011-01-0874
Toyota has been introducing several hybrid vehicles (HV) as a countermeasure to concerns related to the automotive mobility like CO2 reduction, energy security, and emission reduction in urban areas. A next step towards an even more effective solution for these concerns is a plug-in hybrid vehicle (PHV). This vehicle combines the advantages of electric vehicles (EV), which can use clean electric energy, and HV with it's high environmental potential and user-friendliness comparable to conventional vehicles such as a long cruising range. This paper describes a newly developed plug-in hybrid system and its vehicle performance. This system uses a Li-ion battery with high energy density and has an EV-range within usual trip length without sacrificing cabin space. The vehicle achieves a CO2 emission of 59g/km and meets the most stringent emission regulations in the world. The new PHV is a forerunner of the large-scale mass production PHV which will be introduced in two years.
Technical Paper

Newly Developed Toyota Plug-in Hybrid System and its Vehicle Performance under Real Life Operation

2011-06-09
2011-37-0033
Toyota has been introducing several hybrid vehicles (HV) since 1997 as a countermeasure to the concerns raised by automobile, like CO2 reduction, energy security, and pollutant emission reduction in urban areas. Plug in hybrid Vehicle (PHV) uses electric energy from grid rather than fuel for most short trips and therefore presents a next step forward towards an even more effective solution for these concerns. For longer trips, the PHV works as a conventional hybrid vehicle, providing all the benefits of Toyota full hybrid technology, such as low fuel consumption, user-friendliness and long cruising range. This paper describes a newly developed plug-in hybrid system and its vehicle performance. This system uses a Li-ion battery with high energy density and has an EV-range within usual trip length without sacrificing cabin space.
Technical Paper

Development of Plug-In Hybrid System for Midsize Car

2012-04-16
2012-01-1014
In recent years, many various energy sources have been investigated as replacements for traditional automotive fossil fuels to help reduce CO₂ emissions, respond to instabilities in the supply of fossil fuels, and reduce emissions of air pollutants in urban areas. Toyota Motor Corporation considers the plug-in hybrid vehicle, which can use electricity efficiently, to be the most practical current solution to these issues. For this reason, Toyota began sales of the Prius plug-in hybrid in early 2012 in both the U.S. and Japan. This is the first plug-in hybrid vehicle to be mass-produced by Toyota Motor Corporation. Prior to this, in December 2009, Toyota sold 650 plug-in hybrid vehicles through lease programs for verification testing in the U.S., Europe, and Japan. The system of the recently launched mass-produced vehicle underwent major improvements in response to the results of this verification testing. As a result, EV range was increased with a smaller battery.
X