Refine Your Search

Topic

Author

Search Results

Journal Article

Development of Clean Diesel NOx After-treatment System with Sulfur Trap Catalyst

2010-04-12
2010-01-0303
Diesel engines with relatively good fuel economy are known as an effective means of reducing CO₂ emissions. It is expected that diesel engines will continue to expand as efforts to slow global warming are intensified. Diesel particulate and NOx reduction system (DPNR), which was first developed in 2003 for introduction in the Japanese and European markets, shows high purification performance which can meet more stringent regulations in the future. However, it is poisoned by sulfur components in exhaust gas derived from fuel and lubricant. We then developed the sulfur trap DPNR with a sulfur trap catalyst that traps sulfur components in the exhaust gas. High purification performance could be achieved with a small amount of platinum group metal (PGM) due to prevention of sulfur poisoning and thermal deterioration.
Journal Article

Thermal Analysis of the Exhaust Line Focused on the Cool-Down Process

2014-04-01
2014-01-0655
At the engine restart, when the temperature of the catalytic converter is low, additional fuel consumption would be required to warm up the catalyst for controlling exhaust emission.The aim of this study is to find a thermally optimal way to reduce fuel consumption for the catalyst warm up at the engine restart, by improving the thermal retention of the catalytic converter in the cool down process after the previous trip. To make analysis of the thermal flow around the catalytic converter, a 2-D thermal flow model was constructed using the thermal network method. This model simulates the following processes: 1) heat conduction between the substrate and the stainless steel case, 2) heat convection between the stainless steel case and the ambient air, 3) heat convection between the substrate and the gas inside the substrate, 4) heat generation due to chemical reactions.
Technical Paper

The Development of JASO GLV-1 Next Generation Low Viscosity Automotive Gasoline Engine Oils Specification

2020-04-14
2020-01-1426
It is well understood that using lower viscosity engine oils can greatly improve fuel economy [1, 2, 3, 4]. However, it has been impossible to evaluate ultra-low viscosity engine oils (SAE 0W-12 and below) utilizing existing fuel economy test methods. As such, there is no specification for ultra-low viscosity gasoline engine oils [5]. We therefore developed firing and motored fuel economy test methods for ultra-low viscosity oils using engines from Japanese automakers [6, 7, 8]. This was done under the auspices of the JASO Next Generation Engine Oil Task Force (“TF” below), which consists mainly of Japanese automakers and entities working in the petroleum industry. Moreover, the TF used these test methods to develop the JASO GLV-1 specification for next-generation ultra-low viscosity automotive gasoline engine oils such as SAE 0W-8 and 0W-12. In developing the JASO GLV-1 specification, Japanese fuel economy tests and the ILSAC engine tests for evaluating engine reliability were used.
Journal Article

Study of Diesel Engine System for Hybrid Vehicles

2011-08-30
2011-01-2021
In this study, we combined a diesel engine with the Toyota Hybrid System (THS). Utilizing the functions of the THS, reducing engine friction, lowering the compression ratio, and adopting a low pressure loop exhaust gas recirculation system (LPL-EGR) were examined to achieve both low fuel consumption and low nitrogen oxides (NOx) emissions over a wide operating range. After applying this system to a test vehicle it was verified that the fuel economy greatly surpassed that of a conventional diesel engine vehicle and that NOx emissions could be reduced below the value specified in the Euro 6 regulations without DeNOx catalysts.
Technical Paper

Effect of Mirror-Finished Combustion Chamber on Heat Loss

1990-10-01
902141
The use of ceramic insulation to reduce engine heat loss and thus improve fuel economy was examined but found to be detrimental rather than advantageous. This paper analyzes the reasons and presents an alternative approach, namely minimizing the heat transfer area. Experiments were conducted to determine the effects of surface smoothness on BSFC, output torque, heat release rate and piston temperature. It was found that with a mirror-finished combustion chamber, heat loss is decreased and consequently engine output is raised, while fuel consumption is lowered. The percentage reduction in heat loss was ascertained by numerically simulating combustion and was confirmed by FEM analysis of piston thermal distribution.
Journal Article

Effects of High Boiling Point Fuel Additives on Deposits in a Direct Injection Gasoline Engine

2017-10-08
2017-01-2299
The effects of high boiling point fuel additives on deposits were investigated in a commercial turbocharged direct injection gasoline engine. It is known that high boiling point substances have a negative effect on deposits. The distillation end points of blended fuels containing these additives may be approximately 15°C higher than the base fuel (end point: 175°C). Three additives with boiling points between 190 and 196°C were examined: 4-tert-Butyltoluene (TBT), N-Methyl Aniline (NMA), and 2-Methyl-1,5-pentanediamine (MPD). Aromatics and anilines, which may be added to gasoline to increase its octane number, might have a negative effect on deposits. TBT has a benzene ring. NMA has a benzene ring and an amino group. MPD, which has no benzene ring and two amino groups, was selected for comparison with the former two additives.
Journal Article

Effects of Hydrotreated Vegetable Oil (HVO) as Renewable Diesel Fuel on Combustion and Exhaust Emissions in Diesel Engine

2011-08-30
2011-01-1954
The effects of Hydrotreated vegetable oil (HVO) on combustion and emission characteristics in a diesel engine were investigated by using spray analyzer, engine dynamometer and vehicle tests. Spray analysis showed that spray characteristics was virtually the same for HVO and diesel. From the results of the engine dynamometer and the vehicle tests, it was found that the high cetane number and the zero aromatics of HVO could reduce in HC and PM emissions. Moreover, as a result of optimized engine calcification, HVO is capable of improving partial fuel consumption and full-load torque. These results indicate that HVO has beneficial fuel characteristics for diesel engine.
Journal Article

Research into Engine Friction Reduction under Cold Conditions - Effect of Reducing Oil Leakage on Bearing Friction

2014-04-01
2014-01-1662
Fuel efficiency improvement measures are focusing on both cold and hot conditions to help reduce CO2 emissions. Recent technological trends for improving fuel economy such as hybrid vehicles (HVs), engine start and stop systems, and variable valve systems feature expanded use of low-temperature engine operation regions. Under cold conditions (oil temperature: approximately 30°C), fuel consumption is roughly 20% greater than under hot conditions (80°C). The main cause of the increased friction under cold conditions is increased oil viscosity. This research used the motoring slipping method to measure the effect of an improved crankshaft bearing, which accounts for a high proportion of friction under cold conditions. First, the effect of clearance was investigated. Although increasing the clearance helped to decrease friction due to the oil wedge effect, greater oil leakage reduced the oil film temperature increase generated by the friction.
Journal Article

Onboard Gasoline Separation for Improved Vehicle Efficiency

2014-04-01
2014-01-1200
ExxonMobil, Corning and Toyota have collaborated on an Onboard Separation System (OBS) to improve gasoline engine efficiency and performance. OBS is a membrane based process that separates gasoline into higher and lower octane fractions, allowing optimal use of fuel components based on engine requirements. The novel polymer-ceramic composite monolith membrane has been demonstrated to be stable to E10 gasoline, while typically providing 20% yield of ∼100 RON product when using RUL 92 RON gasoline. The OBS system makes use of wasted exhaust energy to effect the fuel separation and provides a simple and reliable means for managing the separated fuels that has been demonstrated using several generations of dual fuel test vehicles. Potential applications include downsizing to increase fuel economy by ∼10% while maintaining performance, and with turbocharging to improve knock resistance.
Technical Paper

Next Generation High Performance ATF for Slip-Controlled Automatic Transmission

1997-10-01
972927
A slip-controlled lock-up clutch system Is very efficient in improving the fuel economy of automatic transmission (AT) equipped vehicles. However, a special automatic transmission fluid (ATF) which combines an anti-shudder property with high torque capacity is required for this system. In this study, we established additive technology for ATF having a sufficient anti-shudder property and high torque capacity. Based on the technology, new ATF: ATF-T4 was developed. It was confirmed in actual AT tests that ATF-T4 has excellent anti-shudder durability and high torque capacity. Furthermore, ATF-T4 has good SAE No. 2 friction characteristics, oxidation stability, compatibility with materials (elastomers, nylons, etc.) and viscosity at low temperatures.
Technical Paper

Toyota New Compact Five-Speed Automatic Transmission for RWD Passenger Cars

1998-02-23
980820
A new compact five-speed automatic transmission (A650E) has been developed for front engine rear wheel drive cars. The development of this transmission has been aimed at improving fuel consumption, power performance, engine noise reduction during highway cruising and smooth acceleration by employing a wide range of gearing and close gear ratios. Generally a five-speed automatic transmission is larger than a four-speed, because of additional friction elements and gears. This can result in a change in the floor panel of the car body. However, by removing a one-way clutch for second gear and employing a unique gear-train layout, this transmission has the same circumference and length as the conventional four-speed automatic transmission (A340E)(1).1 In order to reduce first or second gear noise, gear specification and supporting structures of planetary gears have been optimized by FEM analysis.
Technical Paper

Hybrid System Development for High-Performance All Wheel Drive Vehicle

2007-04-16
2007-01-0296
The original Toyota Hybrid System (THS) was installed in the Prius and was introduced in 1997 as the world's first mass-produced hybrid passenger car. Since then, THS has been continuously improved. In 2003 THS-II (marketed as Hybrid Synergy Drive [HSD]), was installed in a new larger Prius. In 2006 HSD was installed in a Rear Wheel Drive Vehicle: the LEXUS GS450h. This system achieved both 4.5-liter class power performance and compact class fuel economy with outstanding emissions performance. In 2007, this system is expanded to a mechanical all-wheel-drive(AWD) in the LEXUS LS600hL(with new V8 engine). This paper will explain this hybrid system which achieved both V12 class power performance and mid-size class fuel economy, while meeting the most stringent emission standard SULEV as a full-size vehicle.
Technical Paper

Toyota's New Six-Speed Automatic Transmission AB60E for RWD Vehicles

2007-04-16
2007-01-1098
Toyota Motor Corporation has developed a new six-speed automatic transmission AB60E for longitudinal front engine rear wheel drive (RWD) vehicles. This transmission development was aimed at an improvement of power performance and fuel economy, while achieving a lightweight, compact package and a high torque capacity. In order to achieve this target, a high-capacity ultra-flat torque converter, a highly-rigid transmission case, and an ATF warmer with a valve to switch ATF circuits to an air-cooled ATF cooler have been newly developed. Moreover, a new transmission mode control logic “TOW / HAUL” has been developed to improve power performance and driveability during trailer towing. This automatic transmission has adopted the same gear train and hydraulic control system as the conventional six-speed automatic transmission A760E. This paper describes the structure, major features and performance of the transmission in detail.
Technical Paper

Toyota's World First 8-Speed Automatic Transmission for Passenger Cars

2007-04-16
2007-01-1101
TOYOTA has developed the world's first eight-speed automatic transmission (AA80E) for front-engine, rear-drive passenger cars. The AA80E developed for high-torque engines raises the level of power performance and fuel efficiency. To meet the size requirements needed for mounting in a passenger car application, an 8-speed geartrain, torque converter, transmission case and hydraulic control device were all newly-developed. Furthermore, the AA80E has benefited from technical developments to achieve an extremely high level of quietness and shifting performance. In this paper, the details of the AA80E are introduced.
Technical Paper

Development of New Hybrid System for Compact Class Vehicles

2009-04-20
2009-01-1332
Toyota has been evolving a hybrid system since introducing the first mass-production hybrid vehicle in 1997 in response to the increasing automotive-related issues of CO2 emissions, energy security, and urban air pollution. This paper describes a newly developed hybrid system design and its performance. This system was developed with the main purpose to improve fuel consumption, especially for better real world fuel consumption; and to enhance its compatibility with multiple vehicle adoption by downsizing and reducing the weight of its components. At the same time, the hybrid system achieved improved power performance while satisfying stringent emission regulations in the world.
Technical Paper

An Analysis of Behavior for 4WD Vehicle on 4WD-chassis Dynamometer

2010-04-12
2010-01-0926
Technologies of 4WD chassis dynamometers (CHDY hereinafter) have advanced dramatically over the past several years, enabling 4WD vehicles to be tested without modifying their drive-train into 2WD. These advances have opened the use of 4WD-CHDY in all fuel economy and emission evaluation tests. In this paper, factors that influence the accuracy of fuel economy tests on 4WD CHDY are discussed. Fuel economy tests were conducted on 4WD CHDY and we found that most of the vehicle mechanical loss is the tire loss and that stabilizing the tire loss of the test vehicle is essential for the test reproducibility.
Technical Paper

Impact Study of High Biodiesel Blends on Exhaust Emissions to Advanced Aftertreatment Systems

2010-04-12
2010-01-1292
In Biodiesel Fuel Research Working Group(WG) of Japan Auto-Oil Program(JATOP), some impacts of high biodiesel blends have been investigated from the viewpoints of fuel properties, stability, emissions, exhaust aftertreatment systems, cold driveability, mixing in engine oils, durability/reliability and so on. In the impact on exhaust emissions, the impact of high biodiesel blends into diesel fuel on diesel emissions was evaluated. The wide variety of biodiesel blendstock, which included not only some kinds of fatty acid methyl esters(FAME) but also hydrofined biodiesel(HBD) and Fischer-Tropsch diesel fuel(FTD), were selected to evaluate. The main blend level evaluated was 5, 10 and 20% and the higher blend level over 20% was also evaluated in some tests. The main advanced technologies for exhaust aftertreatment systems were diesel particulate filter(DPF), Urea selective catalytic reduction (Urea-SCR) and the combination of DPF and NOx storage reduction catalyst(NSR).
Technical Paper

Newly Developed AZ Series Engine

2001-03-05
2001-01-0327
The design of the newly developed Toyota AZ series 4 cylinder engine has been optimized through both simulations and experiments to improve heat transfer, cooling water flow, vibration noise and other characteristics. The AZ engine was developed to achieve good power performance and significantly reduced vibration noise. The new engine meets the LEV regulations due to the improved combustion and optimized exhaust gas flow. A major reduction in friction has resulted in a significant improvement in fuel economy compared with conventional models. It also pioneered a newly developed resin gear drive balance shaft.
Technical Paper

Development of New-Generation Hybrid System THS II - Drastic Improvement of Power Performance and Fuel Economy

2004-03-08
2004-01-0064
Toyota Hybrid System (THS), the powertrain that combines a gasoline engine and an electric motor was first introduced in December 1997. It became the first mass-produced hybrid passenger vehicle in the world, gaining a reputation as a highly innovative vehicle, and its cumulative worldwide sales have exceeded 120,000 units. In 2003, THS had a further evolution. The “new-generation Toyota Hybrid System (THS II)” would be introduced on the new Prius. This report shall explain “THS II”, which achieved drastic improvements in power performance and fuel economy, while securing the most stringent emission standard Advanced Technology Partial Zero Emission Vehicle (ATPZEV).
Technical Paper

Development of Toyota's New “Super CVT”

2001-03-05
2001-01-0872
Toyota has developed a new continuously variable transmission (CVT) named “Super CVT”. The Super CVT has a wide ratio coverage and adopts a newly developed integrated control system with a direct injection gasoline engine (D-4) equipped with electronically controlled throttle. The combined package has achieved good fuel economy and a high overall level of performance. This paper shows the major features and performance of the Super CVT.
X