Refine Your Search

Topic

Author

Search Results

Journal Article

Development of Full-Scale Wind Tunnel for Enhancement of Vehicle Aerodynamic and Aero-Acoustic Performance

2014-04-01
2014-01-0598
A new wind tunnel was developed and adopted by Toyota Motor Corporation in March 2013. This wind tunnel is equipped with a 5-belt rolling road system with a platform balance that enables the flow simulation under the floor and around the tires in on-road conditions. It also minimizes the characteristic pulsation that occurs in wind tunnels to enable the evaluation of unsteady aerodynamic performance aspects. This paper describes the technology developed for this new wind tunnel and its performance verification results. In addition, after verifying the stand-alone performance of the wind tunnel, a vehicle was placed in the tunnel to verify the utility of the wind tunnel performance. Tests simulated flow fields around the vehicle in on-road conditions and confirmed that the wind tunnel is capable of evaluating unsteady flows.
Journal Article

Thermal Analysis of the Exhaust Line Focused on the Cool-Down Process

2014-04-01
2014-01-0655
At the engine restart, when the temperature of the catalytic converter is low, additional fuel consumption would be required to warm up the catalyst for controlling exhaust emission.The aim of this study is to find a thermally optimal way to reduce fuel consumption for the catalyst warm up at the engine restart, by improving the thermal retention of the catalytic converter in the cool down process after the previous trip. To make analysis of the thermal flow around the catalytic converter, a 2-D thermal flow model was constructed using the thermal network method. This model simulates the following processes: 1) heat conduction between the substrate and the stainless steel case, 2) heat convection between the stainless steel case and the ambient air, 3) heat convection between the substrate and the gas inside the substrate, 4) heat generation due to chemical reactions.
Technical Paper

The Development of JASO GLV-1 Next Generation Low Viscosity Automotive Gasoline Engine Oils Specification

2020-04-14
2020-01-1426
It is well understood that using lower viscosity engine oils can greatly improve fuel economy [1, 2, 3, 4]. However, it has been impossible to evaluate ultra-low viscosity engine oils (SAE 0W-12 and below) utilizing existing fuel economy test methods. As such, there is no specification for ultra-low viscosity gasoline engine oils [5]. We therefore developed firing and motored fuel economy test methods for ultra-low viscosity oils using engines from Japanese automakers [6, 7, 8]. This was done under the auspices of the JASO Next Generation Engine Oil Task Force (“TF” below), which consists mainly of Japanese automakers and entities working in the petroleum industry. Moreover, the TF used these test methods to develop the JASO GLV-1 specification for next-generation ultra-low viscosity automotive gasoline engine oils such as SAE 0W-8 and 0W-12. In developing the JASO GLV-1 specification, Japanese fuel economy tests and the ILSAC engine tests for evaluating engine reliability were used.
Technical Paper

Overview and Future Plan of Automotive Electronic Systems

1986-10-20
861060
This paper provides an overview of automotive electronic systems put into products over the past decade, and describes automotive electronics which have been demonstrated in experimental cars. In addition, future electronic systems found to be promising for the practical use in coming years and the direction of development of electronics are also discussed, as an extention of the overview mentioned above.
Technical Paper

Automobile Navigation System Using Individual Communication Beacon

1991-10-01
912758
A communication system that uses roadside beacons to broadcast road and traffic information and private messages to vehicles has been developed. The system, called Road/Automobile Communication System (RACS), was the result of a joint research project involving the Public Works Research Institute and 25 private-sector corporations. This paper contains an outline of RACS and of an onboard system developed by TOYOTA and presents the results of field tests conducted in the Tokyo area. The results not only verify the capability of the RACS system and the effectiveness of the in-vehicle equipment but also indicate the potential of such a beacon based network to improve traffic jam and driving safety whilst providing enhanced communication facilities without increasing radio-wave congestion.
Journal Article

Experimental Study of the Impact of Diesel/Biodiesel Blends Oxidation on the Fuel Injection System

2014-10-13
2014-01-2767
The stability of Diesel/Biodiesel blends can play an important role in deposits formation inside the fuel injection system (FIS). The impact of the stability of FAME/Diesel fuel blends on lacquer deposits formation and on the behavior and reliability of the FIS was investigated using blends of Rapeseed and Soybean methyl esters (RME, SME) and conventional Diesel fuel (volume fractions of RME and SME range from 0 to 20%v/v). Fuels were aged under accelerated conditions and tested on an injection test rig according to an operating cycle developed to provoke injector needle blocking. The soaking duration was found to affect injector fouling. A relationship between the injector fouling tendency and the fuel stability was established. Under current test condition, injectors fouling increased with fuel oxidation measured with Total-Acid-Number.
Technical Paper

Effect of California Phase 2 Reformulated Gasoline Specifications on Exhaust Emission Reduction; Part 3

1997-10-01
972851
In order to investigate the effect of sulfur and distillation properties on exhaust emissions, emission tests were carried out using a California Low Emission Vehicle (LEV) in accordance with the 1975 Federal Test Procedure ('75 FTP). To study the fuel effect on the exhaust emissions from different systems, these test results were compared with the results obtained from our previous studies using a 92MY vehicle for California Tier 1 standards and a 94MY vehicle for California TLEV standards. (1)(2) First, the sulfur effect on three regulated exhaust emissions (HC, CO and NOx) was studied. As fuel sulfur was changed from 30 to 300 ppm, the exhaust emissions from the LEV increased about 20% in NMHC, 17% in CO and 46% in NOx. To investigate the recovery of the sulfur effect, the test fuel was changed to 30 ppm sulfur after the 300 ppm sulfur tests. The emission level did not recover to that of the initial 30 ppm sulfur during three repeats of the FTP.
Technical Paper

Joint PAJ/JAMA Project - Development of a JASO Gasoline Bench Engine Test for Measuring CCDs

1997-10-01
972837
Detergent additives in automotive gasoline fuel are mainly designed to reduce deposit formation on intake valves and fuel injectors, but it has been reported that some additives may contribute to CCD formation. Therefore, a standardized bench engine test method for CCDs needs to be developed in response to industry demands. Cooperative research between the Petroleum Association of Japan (PAJ) and the Japan Automobile Manufacturers Association, Inc. (JAMA), has led to the development of a 2.2L Honda engine dynamometer-based CCD test procedure to evaluate CCDs from fuel additives. Ten automobile manufacturers, nine petroleum companies and the Petroleum Energy Center joined the project, which underwent PAJ-JAMA round robin testing. This paper describes the CCD test development activities, which include the selection of an engine and the determination of the optimum test conditions and other test criteria.
Technical Paper

Thermal Fatigue Life Prediction for Stainless Steel Exhaust Manifold

1998-02-23
980841
This paper describes the application of a life prediction method for stainless steel exhaust manifolds. Examination of the exhaust manifold cracks indicated that many of the failures could be attributed to out-of-phase thermal fatigue due to compressive strains that occur at high temperatures. Therefore, the plastic strain range was used as the crack initiation criteria. In addition, the comparison of the calculated thermal fatigue stress-strain hysteresis to the experimental hysteresis made it clear that it was essential to use the stress-strain data that was obtained through tensile and compression testing by keeping the test specimens at the maximum temperature of the thermal fatigue test mode. A finite element crack prediction method was developed using the aforementioned material data and good results were obtained.
Technical Paper

A Study of Additive Effects on ATF Frictional Properties Using New Test Methods

1990-10-01
902150
A new test machine has been developed which can evaluate vibration due to stick-slip using an actual full-scale clutch pack. Using this machine, a static breakaway friction coefficient measurement test method and a stick-slip test method have been established. Both methods have been shown to provide results which correlate with the results from both a full-scale assembly test and a vehicle shudder evaluation test. The evaluation of the frictional properties of commercial oils using these test methods showed that the static breakaway friction coefficient and the stick-slip properties have generally contradictory performance to each other for automatic transmission. The study of the frictional properties for typical additives and an analysis of the surface of the steel plates with ESCA (Electron Spectroscopy for Chemical Analysis) showed that the frictional properties are significantly affected by the additives adsorbed on the clutch plate sliding surface.
Technical Paper

Regeneration Capability of Wall-Flow Monolith Diesel Particulate Filter with Electric Heater

1990-02-01
900603
A regeneration of a wall-flow monolith filter with a heater unit was examined. In the preliminary test the regeneration showed unsatisfactory results, back pressure level increased and filter melting occured. Reversing the gas flow through the filter during the regeneration process and initiating particulate combustion from the outlet side of the filter was found to be a solution for the filter melting problem in particular. This “reverse regeneration” system, which we call RRG, compared with a conventional regeneration (CRG) was examined with a model reactor and applied on an actual vehicle on a chassis dynamometer. Tests confirmed that filter melting was prevented, however cracking of the filter could not be prevented with an RRG.
Technical Paper

Proposal of New Criteria and Test Methods for the Dynamic Performance of ATF

1990-02-01
900810
Recently in the world, many modifications and improvements have been taking place in automatic transmission fluid (ATF) in order to get more excellent performance and durability of automatic transmission. The most important criterion for the improvement of ATF is a superior friction characteristic. To consider the performance of ATF, we have investigated the correlation of criteria between actual vehicle tests and bench-scale tests (e.g. SAE#2 Friction Test). And it was proved that conventional criteria and test methods for bench-scale tests were not enough to give best prediction of actual vehicle performance especially for shift quality, anti-shudder performance and static torque capacity which were regarded as of major importance for the development. Based on the findings, we have considered new criteria and test methods for the frictional characteristics, and specific requirements for ATF have been proposed from the standpoint of actual vehicle performance.
Technical Paper

Fatigue Life Prediction on Rough Road Using Full Vehicle Co-simulation Model with Suspension Control

2010-04-12
2010-01-0952
A full vehicle multi-body dynamic (MBD) model with suspension control system is developed for fatigue life prediction under rough road condition. The model consists of tires, a trimmed body, heavy attached parts, powertrain, suspension, joints, and a driver model, and includes a suspension control system that varies characteristics of the suspension according to the rough road inputs. For tires, a commercial MBD tire model is employed with identifiable parameters. The models are simulated to run on the optically measured road surface of the proving ground. Apart from the trimmed body, several important heavy attached parts are modeled separately, that represent dynamic behavior that induces complex body input load. These parts, along with suspension and powertrain systems are connected to the body using nonlinear elements such as joints, springs, and dampers. Contact conditions are used to represent mount bushing, hood lock, stopper rubber, etc.
Technical Paper

An Analysis of Behavior for 4WD Vehicle on 4WD-chassis Dynamometer

2010-04-12
2010-01-0926
Technologies of 4WD chassis dynamometers (CHDY hereinafter) have advanced dramatically over the past several years, enabling 4WD vehicles to be tested without modifying their drive-train into 2WD. These advances have opened the use of 4WD-CHDY in all fuel economy and emission evaluation tests. In this paper, factors that influence the accuracy of fuel economy tests on 4WD CHDY are discussed. Fuel economy tests were conducted on 4WD CHDY and we found that most of the vehicle mechanical loss is the tire loss and that stabilizing the tire loss of the test vehicle is essential for the test reproducibility.
Technical Paper

Impact Study of High Biodiesel Blends on Exhaust Emissions to Advanced Aftertreatment Systems

2010-04-12
2010-01-1292
In Biodiesel Fuel Research Working Group(WG) of Japan Auto-Oil Program(JATOP), some impacts of high biodiesel blends have been investigated from the viewpoints of fuel properties, stability, emissions, exhaust aftertreatment systems, cold driveability, mixing in engine oils, durability/reliability and so on. In the impact on exhaust emissions, the impact of high biodiesel blends into diesel fuel on diesel emissions was evaluated. The wide variety of biodiesel blendstock, which included not only some kinds of fatty acid methyl esters(FAME) but also hydrofined biodiesel(HBD) and Fischer-Tropsch diesel fuel(FTD), were selected to evaluate. The main blend level evaluated was 5, 10 and 20% and the higher blend level over 20% was also evaluated in some tests. The main advanced technologies for exhaust aftertreatment systems were diesel particulate filter(DPF), Urea selective catalytic reduction (Urea-SCR) and the combination of DPF and NOx storage reduction catalyst(NSR).
Technical Paper

Improvements to Premixed Diesel Combustion with Ignition Inhibitor Effects of Premixed Ethanol by Intake Port Injection

2010-04-12
2010-01-0866
Premixed diesel combustion modes including low temperature combustion and MK combustion are expected to realize smokeless and low NOx emissions. As ignition must be delayed until after the end of fuel injection to establish these combustion modes, methods for active ignition control are being actively pursued. It is reported that alcohols including methanol and ethanol strongly inhibit low temperature oxidation in HCCI combustion offering the possibility to control ignition with alcohol induction. In this research improvement of diesel combustion and emissions by ethanol intake port injection for the promotion of premixing of the in-cylinder injected diesel fuel, and by increased EGR for the reduction of combustion temperature.
Technical Paper

Development of New Concept Iridium Plug

2001-01-05
2001-01-1201
In the field of automotive gasoline engines, new products aiming at greater fuel economy and cleaner exhaust gases are under development with the aim of preventing environmental destruction. Severe ignition environments such as lean combustion, stronger charge motion, and large quantities of EGR require ever greater combustion stability. In an effort to meet these requirements, an iridium plug has been developed that achieves high ignitability and long service life through reduction of its diameter, using a highly wear-resistant iridium alloy as the center electrode.(1)(2) Recently, direct injection engines have attracted attention. In stratified combustion, a feature of the direct injection engine, the introduction of rich air-fuel mixtures in the vicinity of the plug ignition region tends to cause carbon fouling. This necessitates plug carbon fouling resistance.
Technical Paper

Lateral Shake Analysis of Open Top Cars

1992-02-01
920409
This paper analyzes the vibration of open-top cars known as lateral shake. The characteristics of the phenomenon were identified by means of road tests and a test method called the shake test was devised to reproduce these characteristics in order that the respective roles of the suspension, body and engine could be determined. On the basis of the analysis findings, a simple but practical simulation model was realized and used to investigate various methods of reducing lateral shake. The simulations indicated that although changing the natural frequency of the suspension has little effect, increasing the natural torsional frequency of the body and/or utilizing the engine as a dynamic damper results in a significant improvement. Further experiments conclusively demonstrated that by optimizing the body structure in accordance with FEM analysis results and optimizing the spring constant of the engine mounts, the level of lateral shake can be halved.
Technical Paper

A Study of Chassis Dynamometers for 4 Wheel Drive Vehicles - Influence of the Front-Rear Rollers Synchronizing System on the Power Distribution

1992-02-01
920251
Recently,four-wheel drive vehicle (hereinafter abbreviated as 4WD vehicle) chassis dynamometer has been developed and in the course of practical use for many kinds of test. The 4WD chassis dynamometer technology, however, involves many new requirements and advanced techniques which were not required for conventional chassis dynamometers. This study has described a generation mechanism for driving force distribution through construction of a dynamic model for the resolution of unsolved issues in composite dynamic systems of 4WD vehicle and 4WD chassis dynamometer. Additionally, we have clarified the reasons why driving force distribution on-the-road is different from that on the chassis dynamometer, and clarified that the work value of driving shaft depends upon the combination of chassis dynamometer types and 4WD vehicles types. The micro-slip theory (hereinafter abbreviated as MS theory) utilized for the analysis is the basic theory that can explain that inclinations.
Technical Paper

Development of High Accuracy Rear A/F Sensor

2017-03-28
2017-01-0949
New 2A/F systems different from usual A/F-O2 systems are being developed to cope with strict regulation of exhaust gas. In the 2A/F systems, 2A/F sensors are equipped in front and rear of a three-way catalyst. The A/F-O2 systems are ideas which use a rear O2 to detect exhaust gas leaked from three-way catalyst early and feed back. On the other hand, the 2A/F systems are ideas which use a rear A/F sensor to detect nearly stoichiometric gas discharged from the three-way catalyst accurately, and to prevent leakage of exhaust gas from the three-way catalyst. Therefore, accurate detection of nearly stoichiometric gas by the rear A/F sensor is the most importrant for the 2A/F systems. In general, the A/F sensors can be classified into two types, so called, one-cell type and two-cell type. Because the one-cell type A/F sensors don’t have hysteresis, they have potential for higher accuracy.
X