Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Development of Exhaust and Evaporative Emissions Systems for Toyota THS II Plug-in Hybrid Electric Vehicle

2010-04-12
2010-01-0831
Exhaust and evaporative emissions systems have been developed to match the characteristics and usage of the Toyota THS II plug-in hybrid electric vehicle (PHEV). Based on the commercially available Prius, the Toyota PHEV features an additional external charging function, which allows it to be driven as an electric vehicle (EV) in urban areas, and as an hybrid electric vehicle (HEV) in high-speed/high-load and long-distance driving situations. To reduce exhaust emissions, the conventional catalyst warm up control has been enhanced to achieve emissions performance that satisfies California's Super Ultra Low Emissions Vehicle (SULEV) standards in every state of battery charge. In addition, a heat insulating fuel vapor containment system (FVS) has been developed using a plastic fuel tank based on the assumption that such a system can reduce the diffusion of vapor inside the fuel tank and the release of fuel vapor in to the atmosphere to the maximum possible extent.
Journal Article

Development of Clean Diesel NOx After-treatment System with Sulfur Trap Catalyst

2010-04-12
2010-01-0303
Diesel engines with relatively good fuel economy are known as an effective means of reducing CO₂ emissions. It is expected that diesel engines will continue to expand as efforts to slow global warming are intensified. Diesel particulate and NOx reduction system (DPNR), which was first developed in 2003 for introduction in the Japanese and European markets, shows high purification performance which can meet more stringent regulations in the future. However, it is poisoned by sulfur components in exhaust gas derived from fuel and lubricant. We then developed the sulfur trap DPNR with a sulfur trap catalyst that traps sulfur components in the exhaust gas. High purification performance could be achieved with a small amount of platinum group metal (PGM) due to prevention of sulfur poisoning and thermal deterioration.
Journal Article

Thermal Analysis of the Exhaust Line Focused on the Cool-Down Process

2014-04-01
2014-01-0655
At the engine restart, when the temperature of the catalytic converter is low, additional fuel consumption would be required to warm up the catalyst for controlling exhaust emission.The aim of this study is to find a thermally optimal way to reduce fuel consumption for the catalyst warm up at the engine restart, by improving the thermal retention of the catalytic converter in the cool down process after the previous trip. To make analysis of the thermal flow around the catalytic converter, a 2-D thermal flow model was constructed using the thermal network method. This model simulates the following processes: 1) heat conduction between the substrate and the stainless steel case, 2) heat convection between the stainless steel case and the ambient air, 3) heat convection between the substrate and the gas inside the substrate, 4) heat generation due to chemical reactions.
Journal Article

New Combustion Concept for Turbocharged Gasoline Direct-Injection Engines

2014-04-01
2014-01-1210
The advantages of gasoline direct-injection are intake air cooling due to fuel vaporization which reduces knocking, additional degrees of freedom in designing a stratified injection mixture, and capability for retarded ignition timing which shortens catalyst light-off time. Stratified mixture combustion designs often require complicated piston shapes which disturb the fluid flow in the cylinder, leading to power reduction, especially in turbocharged gasoline direct-injection engines. Our research replaced the conventional shell-type shallow cavity piston with a dog dish-type curved piston that includes a small lip to facilitate stratification and minimize flow disturbance. As a result, stable stratified combustion and increased power were both achieved.
Journal Article

Development of HEV Engine Start-Shock Prediction Technique Combining Motor Generator System Control and Multi-Body Dynamics (MBD) Models

2013-05-13
2013-01-2007
Previous reports have already described the details of engine start-shock and the mechanism of vibration mechanism in a stationary vehicle. This vibration can be reduced by optimized engine and motor generator vibration-reduction controls. A prediction method using a full-vehicle MBD model has also been developed and applied in actual vehicle development. This paper describes the outline of a new method for the hybrid system of mechanical power split device with two motors that predicts engine start-shock when the vehicle is accelerating while the engine is stopped. It also describes the results of mechanism analysis and component contribution analysis. This method targets engine start-shock caused by driving torque demand during acceleration after vehicle take-off. The hybrid control system is modeled by MATLAB/Simulink. A power management and motor generator control program used in actual vehicles is installed into the main part of the control system model.
Journal Article

Thermal Flow Analysis of Hybrid Transaxle Surface Using Newly-Developed Heat Flux Measurement Method

2015-04-14
2015-01-1652
This research developed a new measurement technology for thermal analysis of the heat radiation from a hybrid transaxle case surface to the air and improved the heat radiation performance. This heat flux measurement technology provides the method to measure heat flux without wiring of sensors. The method does not have effects of wiring on the temperature field and the flow field unlike the conventional methods. Therefore, multipoint measurement of heat flux on the case surface was enabled, and the distribution of heat flux was quantified. To measure heat flux, thermal resistances made of plastic plates were attached to the case surface and the infrared thermography was used for the temperature measurement. The preliminary examination was performed to confirm the accuracy of the thermal evaluation through heat flux measurement. The oil in the transaxle was heated and the amount of heat radiation from the case surface was measured.
Journal Article

Effects of Moving Ground and Rotating Wheels on Aerodynamic Drag of a Two-Box Vehicle

2018-04-03
2018-01-0730
Previous studies and recent practical aerodynamic evaluations have shown that aerodynamic drag of passenger vehicles with “ground simulation” with moving ground and rotating wheels may increase in some cases and decrease in other cases relative to the fixed ground and stationary wheel conditions. Accordingly, the effects of the ground simulation on the aerodynamic drag should be deeply understood for further drag reduction. Although the previous studies demonstrated what is changed by the ground simulation, the reason for the change has not been fully understood. In this article, the effects of wheels and wheel houses attachment and those by the ground simulation with ground movement and wheel rotation on the aerodynamic drag were investigated by quantification of the underfloor flow that plays a crucially important role on the formation of vortical structure around vehicles.
Journal Article

Emissions Reduction Potential of Extremely High Boost and High EGR Rate for an HSDI Diesel Engine and the Reduction Mechanisms of Exhaust Emissions

2008-04-14
2008-01-1189
The effects of an increasing boost pressure, a high EGR rate and a high injection pressure on exhaust emissions from an HSDI (High Speed Direct Injection) diesel engine were examined. The mechanisms were then investigated with both in-cylinder observations and 3DCFD coupled with ϕT-map analysis. Under a high-load condition, increasing the charging efficiency combined with a high injection pressure and a high EGR rate is an effective way to reduce NOx and soot simultaneously, which realized an ultra low NOx of 16ppm at 1.7MPa of IMEP (Indicated Mean Effective Pressure). The flame temperature with low NOx and low soot emissions is decreased by 260K from that with conventional emissions. Also, the distribution of the fuel-air mixture plot on a ϕT-map is moved away from the NOx and soot formation peninsula, compared to the conventional emissions case.
Journal Article

Study of Diesel Engine System for Hybrid Vehicles

2011-08-30
2011-01-2021
In this study, we combined a diesel engine with the Toyota Hybrid System (THS). Utilizing the functions of the THS, reducing engine friction, lowering the compression ratio, and adopting a low pressure loop exhaust gas recirculation system (LPL-EGR) were examined to achieve both low fuel consumption and low nitrogen oxides (NOx) emissions over a wide operating range. After applying this system to a test vehicle it was verified that the fuel economy greatly surpassed that of a conventional diesel engine vehicle and that NOx emissions could be reduced below the value specified in the Euro 6 regulations without DeNOx catalysts.
Journal Article

Decoupled 3D Moment Control for Vehicle Motion Using In-Wheel Motors

2013-04-08
2013-01-0679
Vehicles equipped with in-wheel motors are being studied and developed as a type of electric vehicle. Since these motors are attached to the suspension, a large vertical suspension reaction force is generated during driving. Based on this mechanism, this paper describes the development of a method for independently controlling roll and pitch as well as yaw using driving force distribution control at each wheel. It also details the theoretical calculation of a method for decoupling the dynamic motions. Finally, it describes the application of these 3D dynamic motion control methods to a test vehicle and the confirmation of the performance improvement.
Technical Paper

Development of Magnesium Steering Wheel

1991-02-01
910549
This paper describes the development of one-piece die cast magnesium steering wheel frame for a steering wheel incorporating an air bag system. The light weight magnesium frame was designed to have proper stiffness, strength and characteristics of energy absorption. Magnesium alloys with various aluminum contents were tested, and AM60B alloy was selected because of its favorable properties of strength and elongation. New manufacturing techniques, for example, a vacuum hot chamber die casting system and a surface defect inspection system were developed in order to produce high quality castings. The characteristics of energy absorption were evaluated in the laboratory and on actual vehicle crash test, and the results were satisfactory. The magnesium steering wheel frame is about 45% (550g) lighter than the steel one. It has been in production in Toyota passenger cars with driver side air bags.
Technical Paper

Development of a Rotary Tri-Blade Coupling for Four-Wheel Drive Cars

1991-02-01
910806
A new type of torque transmit coupling has recently been developed for 4WD cars, that provides a better match to ABS, is of lighter weight, and uses a simpler operating mechanism. This coupling transmits torque with a multi-disc clutch that is engaged by the pressure of high viscosity silicone oil. The rotary blade generates variably the silicone oil pressure, according to both differential speed and direction of rotation between the front and rear wheels. This coupling provides a good match between 4WD performance and four wheel Anti-lock Braking System (ABS) by a modification of the rotary blade shape. No additional devices are needed. This paper describes the characteristics of this coupling and the in-vehicle performance.
Technical Paper

A Simulation Method of Rear Axle Gear Noise

1991-05-01
911041
A new experimental method, that enables to estimate the body and driveline sensitivity to unit transmitting error of a hypoid gear for automotive rear axle gear noise, has been developed. Measurements were made by exciting the tooth of the drive-pinion gear and that of the ring gear separately using the special devices designed with regard to simulation of acceleration and deceleration. The characteristic of this method is to estimate the forces at the contact point of the gears. Estimation of these forces is carried out under the condition that the higher stiffness is provided by the tooth of the drive-pinion gear and that of the ring gear, compared with the stiffness of the driveshafts and that of the propeller shaft etc., and relative angular displacement of the torsional vibration between the teeth of the drive-pinion gear and those of the ring gear is constant.
Technical Paper

Automobile Navigation System Using Individual Communication Beacon

1991-10-01
912758
A communication system that uses roadside beacons to broadcast road and traffic information and private messages to vehicles has been developed. The system, called Road/Automobile Communication System (RACS), was the result of a joint research project involving the Public Works Research Institute and 25 private-sector corporations. This paper contains an outline of RACS and of an onboard system developed by TOYOTA and presents the results of field tests conducted in the Tokyo area. The results not only verify the capability of the RACS system and the effectiveness of the in-vehicle equipment but also indicate the potential of such a beacon based network to improve traffic jam and driving safety whilst providing enhanced communication facilities without increasing radio-wave congestion.
Technical Paper

Development of Abradable Flame Spray Coating Technology

1991-02-01
910400
The authors, et al. have succeeded in the practical application of the abradable flame spray coating, used in aircraft engines for the prevention of air leakage and the improvement of efficiency, to automobile turbochargers for the first time in the world. Two layers consisting of a bond coated layer and an abradable layer used to be coated by separate spray nozzles under the conventional technique. In this paper, equations of relations between various flame spray coating conditions and the quality of coated film, which were derived from measured results, will be described. Flame spray coating conditions, that allow the double layer coating by the same spray nozzle, have been determined for each layer. Temperatures and speeds of the flame were measured by means of two-color type high-speed cameras, and equations of their relations with the flame spray coating conditions are derived from the measured result.
Technical Paper

Estimation Method of Tire Treadwear on a Vehicle

1991-02-01
910168
Tire treadwear is a very complicated phenomenon that is influenced by various factors. Any quantitative treadwear estimating method applicable to tires on a vehicle has not yet been established. In this study the effects of acting force to the tire and tire attitude (dynamic wheel alignment) upon treadwear were made clear experimentally by taking notice of the fact that they are only the factors directly influencing tire treadwear provided that a tire and a road surface are determined. Furthermore, on the assumption that treadwear will increase linearly, an examination was made to find a method of estimating treadwear of tires on any vehicle in any running condition by using above-mentioned effects for the values of tire-acting force and dynamic wheel alignment calculated from the vehicle particular and running condition.
Journal Article

Analysis of Piston Friction - Effects of Cylinder Bore Temperature Distribution and Oil Temperature

2011-08-30
2011-01-1746
Hybrid vehicles (HVs) are becoming more widely used. Since HVs supplement engine drive with motor power, the lubricant oil temperature remains at a lower level than in a conventional gasoline vehicle. This study analyzed the effect of cylinder bore temperature and lubricant oil temperature on engine friction. The results showed that, although the lubricant oil temperature was not relevant, the bore temperature had significant effect on piston friction. It was found that raising the temperature of the middle section of the cylinder bore was the most effective way of reducing piston friction.
Journal Article

Development of Di-Air - A New Diesel deNOx System by Adsorbed Intermediate Reductants

2011-08-30
2011-01-2089
An unprecedented phenomenon that achieves high NOx conversion was found over an NSR catalyst. This phenomenon occurs when continuous short cycle injections of hydrocarbons (HCs) are supplied at a predetermined concentration in lean conditions. Furthermore, this phenomenon has a wider range of applicability for different catalyst temperatures (up to 800 degrees Celsius) and SVs, and for extending thermal and sulfur durability than a conventional NOx storage and reduction system. This paper analyzes the reaction mechanism and concludes it to be highly active HC-deNOx by intermediates generated from adsorbed NOx over the base catalysts and HCs partially oxidized by oscillated HC injection. Subsequently, a high performance deNOx system named Di-Air (diesel NOx aftertreatment by adsorbed intermediate reductants) was demonstrated that applies this concept to high speed driving cycles.
Journal Article

Research into Engine Friction Reduction under Cold Conditions - Effect of Reducing Oil Leakage on Bearing Friction

2014-04-01
2014-01-1662
Fuel efficiency improvement measures are focusing on both cold and hot conditions to help reduce CO2 emissions. Recent technological trends for improving fuel economy such as hybrid vehicles (HVs), engine start and stop systems, and variable valve systems feature expanded use of low-temperature engine operation regions. Under cold conditions (oil temperature: approximately 30°C), fuel consumption is roughly 20% greater than under hot conditions (80°C). The main cause of the increased friction under cold conditions is increased oil viscosity. This research used the motoring slipping method to measure the effect of an improved crankshaft bearing, which accounts for a high proportion of friction under cold conditions. First, the effect of clearance was investigated. Although increasing the clearance helped to decrease friction due to the oil wedge effect, greater oil leakage reduced the oil film temperature increase generated by the friction.
Technical Paper

Joint PAJ/JAMA Project - Development of a JASO Gasoline Bench Engine Test for Measuring CCDs

1997-10-01
972837
Detergent additives in automotive gasoline fuel are mainly designed to reduce deposit formation on intake valves and fuel injectors, but it has been reported that some additives may contribute to CCD formation. Therefore, a standardized bench engine test method for CCDs needs to be developed in response to industry demands. Cooperative research between the Petroleum Association of Japan (PAJ) and the Japan Automobile Manufacturers Association, Inc. (JAMA), has led to the development of a 2.2L Honda engine dynamometer-based CCD test procedure to evaluate CCDs from fuel additives. Ten automobile manufacturers, nine petroleum companies and the Petroleum Energy Center joined the project, which underwent PAJ-JAMA round robin testing. This paper describes the CCD test development activities, which include the selection of an engine and the determination of the optimum test conditions and other test criteria.
X