Refine Your Search

Topic

Search Results

Technical Paper

Overview and Future Plan of Automotive Electronic Systems

1986-10-20
861060
This paper provides an overview of automotive electronic systems put into products over the past decade, and describes automotive electronics which have been demonstrated in experimental cars. In addition, future electronic systems found to be promising for the practical use in coming years and the direction of development of electronics are also discussed, as an extention of the overview mentioned above.
Technical Paper

Effect of Mirror-Finished Combustion Chamber on Heat Loss

1990-10-01
902141
The use of ceramic insulation to reduce engine heat loss and thus improve fuel economy was examined but found to be detrimental rather than advantageous. This paper analyzes the reasons and presents an alternative approach, namely minimizing the heat transfer area. Experiments were conducted to determine the effects of surface smoothness on BSFC, output torque, heat release rate and piston temperature. It was found that with a mirror-finished combustion chamber, heat loss is decreased and consequently engine output is raised, while fuel consumption is lowered. The percentage reduction in heat loss was ascertained by numerically simulating combustion and was confirmed by FEM analysis of piston thermal distribution.
Technical Paper

Prediction of the Life of CVJ Boot in Design Stage and Establishment of an Optimal Design Method with FEA

1998-02-23
980847
In a stage of designing a CVJ boot, analytic conditions of FEA method are established so that values calculated with the FEA method coincide with the actually measured values. This has made it possible to predict the life of the boot under bench testing. Furthermore, the boot field life can also be predicted by the minor rule based on the joint-angle frequencies of a vehicle. As a result, it has become possible to determine an optimal configuration in the design stage and to decrease the number of test cycles, resulting in reduced development lead time.
Technical Paper

Quantitative Analysis of the Relation between Flame Structure and Turbulence in HCCI Combustion by Two-Dimensional Temperature Measurement

2008-04-14
2008-01-0061
The structure of HCCI (homogeneous charge compression ignition) combustion flames was quantitatively analyzed by measuring the two-dimensional gas temperature distribution using phosphor thermometry. It was found from the relation between a turbulent Reynolds number and Karlovitz number that, when compared with the flame propagation in an S.I. engine, HCCI combustion has a wider flame structure with respect to the turbulence scale. As a result of our experimentation for the influence of low temperature reaction (LTR) using two types of fuel, it was also confirmed that different types of fuel produce different histories of flame kernel structure.
Technical Paper

Structural Design Technology for Brake Squeal Reduction Using Sensitivity Analysis

2010-10-10
2010-01-1691
The finite element method (FEM) is effective for analyzing brake squeal phenomena. Although FEM analysis can be used to easily obtain squeal frequencies and complex vibration modes, it is difficult to identify how to modify brake structure design or contact conditions between components. Therefore, this study deals with a practical design method using sensitivity analysis to reduce brake squeal, which is capable of optimizing both the structure of components and contact conditions. A series of analysis processes that consist of modal reduction, complex eigenvalue analysis, sensitivity analysis and optimization analysis is shown and some application results are described using disk brake systems.
Technical Paper

Development of New Concept Iridium Plug

2001-01-05
2001-01-1201
In the field of automotive gasoline engines, new products aiming at greater fuel economy and cleaner exhaust gases are under development with the aim of preventing environmental destruction. Severe ignition environments such as lean combustion, stronger charge motion, and large quantities of EGR require ever greater combustion stability. In an effort to meet these requirements, an iridium plug has been developed that achieves high ignitability and long service life through reduction of its diameter, using a highly wear-resistant iridium alloy as the center electrode.(1)(2) Recently, direct injection engines have attracted attention. In stratified combustion, a feature of the direct injection engine, the introduction of rich air-fuel mixtures in the vicinity of the plug ignition region tends to cause carbon fouling. This necessitates plug carbon fouling resistance.
Technical Paper

First Order Analysis of Low Frequency Disk Brake Squeal

2001-10-28
2001-01-3136
Reducing disk brake squeal, especially low frequency disk brake squeal (1-5kHz), is an important technical issue in vehicles. The disk brake squeal mechanism has been shown in many papers (1), (2), (3), (4), (5), (6), (7), (8) and (9). Recently, the disk brake squeal comes to be simulated by Finite Element Analysis (FEA) for disk brake design (10), (11), (12), (13), (14), (15), (16), (17), (18) and (19). Though FEA is useful, it is sometimes difficult to modify in large when the prototype of disk brake system has been designed. First Order Analysis gives design concepts, which should be done before FEA. This paper shows First Order Analysis of low frequency disk brake squeal. The equation of motion is shown in 4 degrees of freedom model. In this equation the generalized force matrix is composed of the variations of pressure and friction force between each brake pad and brake disk. The generalized force matrix is arranged with a symmetric matrix and an anti-symmetric matrix.
Technical Paper

Lateral Shake Analysis of Open Top Cars

1992-02-01
920409
This paper analyzes the vibration of open-top cars known as lateral shake. The characteristics of the phenomenon were identified by means of road tests and a test method called the shake test was devised to reproduce these characteristics in order that the respective roles of the suspension, body and engine could be determined. On the basis of the analysis findings, a simple but practical simulation model was realized and used to investigate various methods of reducing lateral shake. The simulations indicated that although changing the natural frequency of the suspension has little effect, increasing the natural torsional frequency of the body and/or utilizing the engine as a dynamic damper results in a significant improvement. Further experiments conclusively demonstrated that by optimizing the body structure in accordance with FEM analysis results and optimizing the spring constant of the engine mounts, the level of lateral shake can be halved.
Technical Paper

Development of In-cylinder Mixture and Flame Propagation Distribution Measurement Device with Spark Plug Type Sensor

2011-08-30
2011-01-2045
A new method to measure in-cylinder flame propagation and mixture distribution has been developed. The distribution is derived from analyzing the temporal history of flame spectra of CH* and C2*, which are detected by a spark plug type sensor with multi-optical fibers. The validity of this method was confirmed by verifying that the measurement results corresponded with the results of high speed flame visualization and laser induced fluorescence (LIF) measurement. This method was also applied to analysis of cyclic combustion fluctuation on start-up in a direct injection spark ignition (DISI) engine, and its applicability was confirmed.
Technical Paper

Dynamic Finite Element Analysis of Window Regulator Linkage System Using LS-DYNA

1998-02-01
980308
One of the main types of window regulators that are in current use is the X-arm type window regulator, which utilizes a linkage mechanism to raise and lower the window glass. One of the evaluation items that are necessary in analyzing the performance of a window regulator is the operating force that is required to operate the handle for moving up the window glass. It is difficult to estimate this force during the design stage. We have to take into consideration factors such as the influences of the various types of contacts and the elastic deformation of linkage arm. Therefore, we used the LS-DYNA, which is dynamic and kinematic nonlinear finite element analysis code, to develop a technique for analyzing the handle operating force. Then, we used this technique to conduct parameter studies to identify the factors that are believed to exert a greater influence on the operating force.
Technical Paper

Finite Element Simulation of Stamping a Laser-Welded Blank

1993-03-01
930522
In order to achieve higher assembly accuracy for automotive body, increased body rigidity, and decreased stamping and assembly costs in car body manufacturing, a new method of sheet metal stamping has been developed, in which several blanks of different strength and thickness are integrated using CO2 laser-welding. The stamping formability of the laser-welded blank is limited compared with that of the conventional single blank. It is very difficult to predict the exact decrease in formability for different positions of the weld line and for different matching of materials. Because experimental estimations were indispensable for stamping die designers to evaluate formability at the stage of planning dies, many man-hours were spent conducting actual experiments.
Technical Paper

Development of Exhaust Manifold Muffler

1993-03-01
930625
The muffler layout in the exhaust system has been optimized for the attenuation of exhaust noise which has not been studied much to this date. As a result, “Exhaust Manifold Muffler” has been developed. This unit is capable of efficiently muffling the primary and secondary componemts of the engine explosion stroke noise. Such task is achieved without deterioration of engine performance by allocating the volume at the junction of the exhaust manifold branch pipes. Acoustic characteristics of “Exhaust Manifold Muffler” have been analyzed by FEM and experimental methods, which have shown that not only does the volume placed at the junction of the exhaust manifold branch pipes work as a conventional muffler, but also prevents the exhaust manifold branch pipes from amplifying exhaust noise. This is the reason why “Exhaust Manifold Muffler” can muffle more efficiently than the conventional muffler.
Technical Paper

Road Noise Reduction Using Transfer Function Synthesis Method

1993-05-01
931325
An experimental simulation method has been developed for predicting the noise and vibration characteristics of a complete vehicle when body frame stiffness is changed. This method was developed by means of an improved transfer function synthesis method. Advantages over numerical simulation methods, such as finite element analysis include dramatic reductions in computation time. This experimental method is also very easy to carry out with a few measurement data. By applying this method to investigate the effects of stiffness changes of different vehicle components on low frequency road noise, effective ways of reducing road noise were proposed in the first stage of vehicle development.
Technical Paper

Development of Shape Optimization Technique Based on The Basis Vector Method

1995-02-01
950575
A practical shape optimization technique is presented. We employed the basis vector method to parameterize the shape of the structural domain that is usually discretized by the finite element method. VMA/GENESIS software, the optimization system with finite element analysis, sensitivity analysis, and numerical optimization capabilities, was used for this study. Various design problems such as body, chassis, and engine parts design are solved to demonstrate the effectiveness and the robustness of the present approach for automotive applications.
Technical Paper

Development of Hybrid System for SUV

2005-04-11
2005-01-0273
Toyota Hybrid System (THS), that combines a gasoline engine and an electric motor was installed in the Prius, which was introduced in 1997 as the world's first mass-produced hybrid passenger car, and was vastly improved in 2003. The new Prius gained a status of highly innovative and practical vehicle. In 2005, combined with a V6 engine, THS had a further evolution as a Hybrid System for SUV, which was installed in the RX400h and Highlander Hybrid to be introduced into the world. This report will explain “new THS” which achieved both V8 engine power performance and compact class fuel economy, while securing the most stringent emission standard, SULEV.
Technical Paper

A Study of Noise in Vehicle Passenger Compartment during Acceleration

1985-05-15
850965
A discomforting noise can sometimes be heard in a vehicle passenger compartment during acceleration which can be annoying to passengers. We call this noise a “rumbling noise”. A detailed study of the rumbling noise spectrum has clarified the generating mechanism of the rumbling noise and the relation between the spectral structure and the tone. In order to analyze the rumbling noise, we simulated it with electrically synthesized noise. This method showed that at the times when the noise is heard there are always more than three discrete harmonics which are half an order harmonics of the engine revolution. The sensation of discomfort depends on the phase, frequency and magnitude of each frequency component. To evaluate the noise quantitatively, we also analyzed the shape of the time domain noise envelope. The envelope shape has a good correlation with the feelings of discomfort.
Technical Paper

Silicon Nitride Swirl Lower-Chamber for High Power Turbocharged Diesel Engines

1985-02-01
850523
This paper describes application of sintered silicon nitride to the swirl lower-chamber in order to improve performance of turbocharged diesel engines. Various stress analyses by finite element method and stress measurements have been applied to determine the design specifications for the component, which compromise brittleness of ceramic materials. Material development was conducted to evaluate strength, fracture toughness, and thermal properties for the sintered bodies. Ceramic injection molding has been employed to fabricate components with large quantities in the present work. Quality assurance for the components can be made by reliability evaluation methods as well as non-destructive and stress loading inspections. It is found that the engine performance with ceramic component has been increased in the power out put of 9PS as compared to that of conventional engines.
Technical Paper

Future Automotive Technical Trends

1988-03-01
871155
This paper provides an overview of the automotive technology and its future trends mainly focussing on Japan. The future automotive technology will basically be on the projection of current technology, although it is expected more progress to be made in advanced and precision control systems. The application of electronics and development of new materials will play a very important role in this area.
Technical Paper

Method of Fatigue Life Estimation for Spot-Welded Structures

2000-03-06
2000-01-0779
A method of fatigue life estimation for the spot-welds of vehicle body structures by means of Finite Element Analysis (FEA) was studied. 6 general forces applied to a nugget of spot-weld under multiaxial loads were determined and the Nominal Structural Stress (σns) was calculated from them. It was confirmed that fatigue strength of the spot-welds under various multiaxial loads could be estimated universally by using σns. Based on the theory of elasticity of plates, stress of spot-weld nugget was analyzed. The theoretical equations for determining the principal stress at the nugget edge from6 general forces acting on a nugget were derived. And the principal stress was defined as the σns. The value of σns was determined by FEM that used a solid model and compared with the theoretical calculation value. They agreed quite well. Fatigue tests of DC specimens under various multiaxial loads (shear plus cross tension and tensile shear plus torsion) were conducted.
Technical Paper

Toyota's U340E Four-speed Automatic Transaxle

2000-03-06
2000-01-1147
TOYOTA has designed a new family of automatic transaxles named the “Super ECT”. These are the next generation of automatic transaxles (AT), for FWD passenger cars. The aim of this development was compactness, lightness, and improvements in fuel economy and shift quality. There are several kinds of transaxles included in this group to match each of the FWD passenger cars and engines. The “U340E,” a four-speed automatic transaxle, has been developed as one member of this family. This is one of the most compact and light AT in its class, and has greatly contributed to the fuel economy of vehicles. This paper will give an overview of the “Super ECT” and the major features and performance of the U340E.
X