Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

An Application of Shape Optimization to Brake Squeal Phenomena

2015-09-27
2015-01-2658
The present paper describes an application of non-parametric shape optimization to disc brake squeal phenomena. A main problem is defined as complex eigenvalue problem in which the real part of the complex eigenvalue causing the brake squeal is chosen as an objective cost function. The Fre´chet derivative of the objective cost function with respect to the domain variation, named as the shape derivative of the objective cost function, is evaluated using the solution of the main problem and the adjoint problem. A selection criterion of the adoptive mode number in component mode synthesis (CMS), which is used in the main problem, is presented in order to reduce the computational error in complex eigenvalue pairs. A scheme to solve the shape optimization problem is presented using an iterative algorithm based on the H1 gradient method for reshaping. For an application of the optimization method, a numerical example of a practical disc brake model is presented.
Journal Article

Effects of Moving Ground and Rotating Wheels on Aerodynamic Drag of a Two-Box Vehicle

2018-04-03
2018-01-0730
Previous studies and recent practical aerodynamic evaluations have shown that aerodynamic drag of passenger vehicles with “ground simulation” with moving ground and rotating wheels may increase in some cases and decrease in other cases relative to the fixed ground and stationary wheel conditions. Accordingly, the effects of the ground simulation on the aerodynamic drag should be deeply understood for further drag reduction. Although the previous studies demonstrated what is changed by the ground simulation, the reason for the change has not been fully understood. In this article, the effects of wheels and wheel houses attachment and those by the ground simulation with ground movement and wheel rotation on the aerodynamic drag were investigated by quantification of the underfloor flow that plays a crucially important role on the formation of vortical structure around vehicles.
Journal Article

Friction Coefficient Variation Mechanism under Wet Condition in Disk Brake (Variation Mechanism Contributing Wet Wear Debris)

2016-09-18
2016-01-1943
This paper deals with friction under wet condition in the disk brake system of automobiles. In our previous study, the variation of friction coefficient μ was observed under wet condition. And it was experimentally found that μ becomes high when wear debris contains little moisture. Based on the result, in this paper, we propose a hypothesis that agglomerates composed of the wet wear debris induce the μ variation as the agglomerates are jammed in the gaps between the friction surfaces of a brake pad and a disk rotor. For supporting the hypothesis, firstly, we measure the friction property of the wet wear debris, and confirm that the capillary force under the pendular state is a factor contributing to the μ variation. After that, we simulate the wear debris behavior with or without the capillary force using the particle-based simulation. We prepare the simulation model for the friction surfaces which contribute to the friction force through the wear debris.
Journal Article

Decoupled 3D Moment Control for Vehicle Motion Using In-Wheel Motors

2013-04-08
2013-01-0679
Vehicles equipped with in-wheel motors are being studied and developed as a type of electric vehicle. Since these motors are attached to the suspension, a large vertical suspension reaction force is generated during driving. Based on this mechanism, this paper describes the development of a method for independently controlling roll and pitch as well as yaw using driving force distribution control at each wheel. It also details the theoretical calculation of a method for decoupling the dynamic motions. Finally, it describes the application of these 3D dynamic motion control methods to a test vehicle and the confirmation of the performance improvement.
Technical Paper

Temperature Sensor for Vehicle

1991-02-01
910493
A high reliability and low cost temperature sensor for motor vehicle has been developed. The principle of measuring temperature is based on the NTC thermistor. And novel production techniques for sealing and electric connection are presented.
Technical Paper

Research in Regard to Sensory Characteristics Measuring for the Impulse Noise of the Engine Valve System

1991-02-01
910620
This research proposes an automatic measuring method for the impulse noise of the valve system in engine production line. This research is composed of the following two parts. (1) The most suitable method for indicating the impulse noise of the valve system - the representative characteristic values - is selected from the general measuring methods for impulse noise. As the result, the crest factor in the frequency band above 1kHz became optimal. (2) By detailed sensory characteristic analysis it was found that impulse noise can be heard better with increasing frequency and that there is little influence in the frequency band with the same frequency as the background noise. Thus the crest factor was obtained for each frequency, and the sensory test for the impulse noise of the valve system is deduced by this linear coupling. As the result of multiple reguression analysis, a high accuracy prediction equetion with a multiple correlation coefficient of 0.91 has been obtained.
Technical Paper

Development of a Rotary Tri-Blade Coupling for Four-Wheel Drive Cars

1991-02-01
910806
A new type of torque transmit coupling has recently been developed for 4WD cars, that provides a better match to ABS, is of lighter weight, and uses a simpler operating mechanism. This coupling transmits torque with a multi-disc clutch that is engaged by the pressure of high viscosity silicone oil. The rotary blade generates variably the silicone oil pressure, according to both differential speed and direction of rotation between the front and rear wheels. This coupling provides a good match between 4WD performance and four wheel Anti-lock Braking System (ABS) by a modification of the rotary blade shape. No additional devices are needed. This paper describes the characteristics of this coupling and the in-vehicle performance.
Technical Paper

A Simulation Method of Rear Axle Gear Noise

1991-05-01
911041
A new experimental method, that enables to estimate the body and driveline sensitivity to unit transmitting error of a hypoid gear for automotive rear axle gear noise, has been developed. Measurements were made by exciting the tooth of the drive-pinion gear and that of the ring gear separately using the special devices designed with regard to simulation of acceleration and deceleration. The characteristic of this method is to estimate the forces at the contact point of the gears. Estimation of these forces is carried out under the condition that the higher stiffness is provided by the tooth of the drive-pinion gear and that of the ring gear, compared with the stiffness of the driveshafts and that of the propeller shaft etc., and relative angular displacement of the torsional vibration between the teeth of the drive-pinion gear and those of the ring gear is constant.
Technical Paper

Development of Four Wheel Steering System Using Yaw Rate Feedback Control

1991-09-01
911922
Toyota has succeeded in developing for mass production the active four-wheel steering(4WS) system using yaw rate feedback and steering angle feedforward control. The active 4WS system consists of a group of various sensors, including the newly developed yaw rate sensor, ECU, a rear wheel steering actuator that employs a stepping motor and hydraulic valve, and other hydraulic elements, which actively control the steering angle of the rear wheels. The new system ensures a good response and a high level of stabililty for quick steering wen during a high-speed drive. When the vehicle deflects due to a sudden side wind, road surface disturbance, or abrupt braking, steering is automatically corrected through the rear wheels to significantly improve forward stability. In addition, the! system prwides improved performance in making small radius turns because the rear wheels are steering up to five degrees when the front wheels are turned to a large angle.
Technical Paper

Dynamic Simulation of Suspension Load for Passenger Car with Low Profile Tires

1991-09-01
911901
This paper presents a technique to predict the suspension load in early design stage when a passenger car with low profile tires goes over a bump. The suspension load is simulated by using ADAHS (Automatic Dynamic Analysis of Mechanical Systems). The tire was modeled as a radial spring with non-linearity decided by test data. The simulated results of suspension load agreed with the test data. The effect of shock absorber characteristics and spring bumper stiffness on the suspension load was studied by using this simulation model. As a result, the optimum specification for suspension load reduction was taken.
Technical Paper

Development of New Toyota Electronic Modulated Suspension - Two Concepts for Semi-Active Suspension Control

1991-09-01
911900
The shock absorber of suspension has two important basic functions. One is to control vehicle attitude changes when steering and when accelerating and decelerating, and the other is to dampen forces transmitted from the road by its damping effect, thus softening shocks. The characteristics of these two demands in performance, driving stability and riding comfort, conflict with each other but are selected from the concept of a car and from coaching by users. Namely, someone puts stress on driving stability and the other puts stress on riding comfort. Electronics have advanced in recent years and the use of electronic absorber control systems in order to achieve both driving stability and riding comfort has become widespread first of all in Japanese vehicles and also in European and American vehicles. Toyota first developed its TEMS (TOYOTA ELECTRONIC MODULATED SUSPENSION) in 1983 (1) and since then many improvements have been added.
Technical Paper

Development of Abradable Flame Spray Coating Technology

1991-02-01
910400
The authors, et al. have succeeded in the practical application of the abradable flame spray coating, used in aircraft engines for the prevention of air leakage and the improvement of efficiency, to automobile turbochargers for the first time in the world. Two layers consisting of a bond coated layer and an abradable layer used to be coated by separate spray nozzles under the conventional technique. In this paper, equations of relations between various flame spray coating conditions and the quality of coated film, which were derived from measured results, will be described. Flame spray coating conditions, that allow the double layer coating by the same spray nozzle, have been determined for each layer. Temperatures and speeds of the flame were measured by means of two-color type high-speed cameras, and equations of their relations with the flame spray coating conditions are derived from the measured result.
Technical Paper

New Plastic Coloring and Forming System

1991-02-01
910363
This paper describes a new plastic coloring and forming system. The system greatly reduces the time and amount of raw materials necessary for color changes, and eliminates the need for manual cleaning during a color change. This system is well-suited for small-lot production with frequent color changes, as well as for automated production systems. The system is being used by auto parts makers, and is practical in a variety of other fields involved with the coloring and forming of plastics.
Technical Paper

Estimation Method of Tire Treadwear on a Vehicle

1991-02-01
910168
Tire treadwear is a very complicated phenomenon that is influenced by various factors. Any quantitative treadwear estimating method applicable to tires on a vehicle has not yet been established. In this study the effects of acting force to the tire and tire attitude (dynamic wheel alignment) upon treadwear were made clear experimentally by taking notice of the fact that they are only the factors directly influencing tire treadwear provided that a tire and a road surface are determined. Furthermore, on the assumption that treadwear will increase linearly, an examination was made to find a method of estimating treadwear of tires on any vehicle in any running condition by using above-mentioned effects for the values of tire-acting force and dynamic wheel alignment calculated from the vehicle particular and running condition.
Journal Article

Injection Nozzle Coking Mechanism in Common-rail Diesel Engine

2011-08-30
2011-01-1818
The hole diameter of injection nozzles in diesel engines has become smaller and the nozzle coking could potentially cause injection characteristics and emissions to deteriorate. In this research, engine tests with zinc-added fuels, deposit analyses, laboratory tests and numerical calculations were carried out to clarify the deposit formation mechanisms. In the initial phase of deposit formation, lower zinc carboxylate formed close to the nozzle hole outlet by reactions between zinc in the fuel and lower carboxylic acid in the combustion gas. In the subsequent growth phase, the main component changed to zinc carbonate close to nozzle hole inlet by reactions with CO₂ in the combustion gas. Metal components and combustion gases are essential elements in the composition of these deposits. One way of removing these deposits is to utilize cavitations inside the nozzle holes.
Journal Article

Measurement of Oil Film Thickness in the Main Bearings of an Operating Engine using Thin-Film Electrode

2011-08-30
2011-01-2117
Oil film thickness is one of the most important issues for optimization of bearing design. A technique has been developed to measure oil film thickness by noting the change in capacitance between the shaft and a thin-film electrode of several micrometers thickness formed on the surface of a bearing. The authors applied this technique to the main journals of an automobile engine and measured the oil film thickness up to maximum speed and full load. The oil film thickness became thinner with increased engine load, and then turned thicker with increased engine speed.
Journal Article

Research into Engine Friction Reduction under Cold Conditions - Effect of Reducing Oil Leakage on Bearing Friction

2014-04-01
2014-01-1662
Fuel efficiency improvement measures are focusing on both cold and hot conditions to help reduce CO2 emissions. Recent technological trends for improving fuel economy such as hybrid vehicles (HVs), engine start and stop systems, and variable valve systems feature expanded use of low-temperature engine operation regions. Under cold conditions (oil temperature: approximately 30°C), fuel consumption is roughly 20% greater than under hot conditions (80°C). The main cause of the increased friction under cold conditions is increased oil viscosity. This research used the motoring slipping method to measure the effect of an improved crankshaft bearing, which accounts for a high proportion of friction under cold conditions. First, the effect of clearance was investigated. Although increasing the clearance helped to decrease friction due to the oil wedge effect, greater oil leakage reduced the oil film temperature increase generated by the friction.
Technical Paper

Joint PAJ/JAMA Project - Development of a JASO Gasoline Bench Engine Test for Measuring CCDs

1997-10-01
972837
Detergent additives in automotive gasoline fuel are mainly designed to reduce deposit formation on intake valves and fuel injectors, but it has been reported that some additives may contribute to CCD formation. Therefore, a standardized bench engine test method for CCDs needs to be developed in response to industry demands. Cooperative research between the Petroleum Association of Japan (PAJ) and the Japan Automobile Manufacturers Association, Inc. (JAMA), has led to the development of a 2.2L Honda engine dynamometer-based CCD test procedure to evaluate CCDs from fuel additives. Ten automobile manufacturers, nine petroleum companies and the Petroleum Energy Center joined the project, which underwent PAJ-JAMA round robin testing. This paper describes the CCD test development activities, which include the selection of an engine and the determination of the optimum test conditions and other test criteria.
Technical Paper

Toyota New Compact Five-Speed Automatic Transmission for RWD Passenger Cars

1998-02-23
980820
A new compact five-speed automatic transmission (A650E) has been developed for front engine rear wheel drive cars. The development of this transmission has been aimed at improving fuel consumption, power performance, engine noise reduction during highway cruising and smooth acceleration by employing a wide range of gearing and close gear ratios. Generally a five-speed automatic transmission is larger than a four-speed, because of additional friction elements and gears. This can result in a change in the floor panel of the car body. However, by removing a one-way clutch for second gear and employing a unique gear-train layout, this transmission has the same circumference and length as the conventional four-speed automatic transmission (A340E)(1).1 In order to reduce first or second gear noise, gear specification and supporting structures of planetary gears have been optimized by FEM analysis.
Technical Paper

Development of a New Metal Cylinder Head Gasket

1998-02-23
980844
With the recent improvements in automotive engine performance, the operating conditions for the cylinder head gasket are becoming more critical. Today's cylinder head gasket is required not only to ensure high durability, but also to contribute to improving engine performance. This paper introduces a new metal cylinder head gasket consisting of two beaded plates and a thin sheet in-between. Because of the thin sheet, this gasket has several superior characteristics for open decked aluminum cylinder block engines. Sealability and durability were significantly improved.
X