Refine Your Search

Topic

Affiliation

Search Results

Journal Article

Development of Clean Diesel NOx After-treatment System with Sulfur Trap Catalyst

2010-04-12
2010-01-0303
Diesel engines with relatively good fuel economy are known as an effective means of reducing CO₂ emissions. It is expected that diesel engines will continue to expand as efforts to slow global warming are intensified. Diesel particulate and NOx reduction system (DPNR), which was first developed in 2003 for introduction in the Japanese and European markets, shows high purification performance which can meet more stringent regulations in the future. However, it is poisoned by sulfur components in exhaust gas derived from fuel and lubricant. We then developed the sulfur trap DPNR with a sulfur trap catalyst that traps sulfur components in the exhaust gas. High purification performance could be achieved with a small amount of platinum group metal (PGM) due to prevention of sulfur poisoning and thermal deterioration.
Journal Article

Thermal Analysis of the Exhaust Line Focused on the Cool-Down Process

2014-04-01
2014-01-0655
At the engine restart, when the temperature of the catalytic converter is low, additional fuel consumption would be required to warm up the catalyst for controlling exhaust emission.The aim of this study is to find a thermally optimal way to reduce fuel consumption for the catalyst warm up at the engine restart, by improving the thermal retention of the catalytic converter in the cool down process after the previous trip. To make analysis of the thermal flow around the catalytic converter, a 2-D thermal flow model was constructed using the thermal network method. This model simulates the following processes: 1) heat conduction between the substrate and the stainless steel case, 2) heat convection between the stainless steel case and the ambient air, 3) heat convection between the substrate and the gas inside the substrate, 4) heat generation due to chemical reactions.
Technical Paper

Overview and Future Plan of Automotive Electronic Systems

1986-10-20
861060
This paper provides an overview of automotive electronic systems put into products over the past decade, and describes automotive electronics which have been demonstrated in experimental cars. In addition, future electronic systems found to be promising for the practical use in coming years and the direction of development of electronics are also discussed, as an extention of the overview mentioned above.
Technical Paper

Development of Magnesium Steering Wheel

1991-02-01
910549
This paper describes the development of one-piece die cast magnesium steering wheel frame for a steering wheel incorporating an air bag system. The light weight magnesium frame was designed to have proper stiffness, strength and characteristics of energy absorption. Magnesium alloys with various aluminum contents were tested, and AM60B alloy was selected because of its favorable properties of strength and elongation. New manufacturing techniques, for example, a vacuum hot chamber die casting system and a surface defect inspection system were developed in order to produce high quality castings. The characteristics of energy absorption were evaluated in the laboratory and on actual vehicle crash test, and the results were satisfactory. The magnesium steering wheel frame is about 45% (550g) lighter than the steel one. It has been in production in Toyota passenger cars with driver side air bags.
Technical Paper

Automobile Navigation System Using Individual Communication Beacon

1991-10-01
912758
A communication system that uses roadside beacons to broadcast road and traffic information and private messages to vehicles has been developed. The system, called Road/Automobile Communication System (RACS), was the result of a joint research project involving the Public Works Research Institute and 25 private-sector corporations. This paper contains an outline of RACS and of an onboard system developed by TOYOTA and presents the results of field tests conducted in the Tokyo area. The results not only verify the capability of the RACS system and the effectiveness of the in-vehicle equipment but also indicate the potential of such a beacon based network to improve traffic jam and driving safety whilst providing enhanced communication facilities without increasing radio-wave congestion.
Technical Paper

Dynamic Simulation of Suspension Load for Passenger Car with Low Profile Tires

1991-09-01
911901
This paper presents a technique to predict the suspension load in early design stage when a passenger car with low profile tires goes over a bump. The suspension load is simulated by using ADAHS (Automatic Dynamic Analysis of Mechanical Systems). The tire was modeled as a radial spring with non-linearity decided by test data. The simulated results of suspension load agreed with the test data. The effect of shock absorber characteristics and spring bumper stiffness on the suspension load was studied by using this simulation model. As a result, the optimum specification for suspension load reduction was taken.
Journal Article

FAME Blended Diesel Fuel Impacts on Engine/Vehicle Systems

2011-08-30
2011-01-1944
The impact of fatty acid methyl ester (FAME) blended diesel fuel on engine/vehicle systems was comprehensively investigated by vehicle, laboratory and engine tests. In this study, 20% FAME blended fuel (B20) was mainly used and soy bean oil methyl ester (SME) was primarily selected as the FAME. Vehicle testing with long-term fuel storage in vehicle fuel tanks was conducted, considering the most severe conditions in market use. Laboratory and engine tests were also conducted to better understand the vehicle test results. In the vehicle test, engine startability, idle roughness and fuel injection control were evaluated using nine vehicles with plastic or metal fuel tanks. All vehicles showed no problems up to 7 months. While five vehicles with plastic fuel tank did not show any problems throughout the test period up to 18 months, four vehicles with metal fuel tanks experienced malfunctions in engine start or fuel injection control following 8, 13, 13 and 18 months respectively.
Technical Paper

Joint PAJ/JAMA Project - Development of a JASO Gasoline Bench Engine Test for Measuring CCDs

1997-10-01
972837
Detergent additives in automotive gasoline fuel are mainly designed to reduce deposit formation on intake valves and fuel injectors, but it has been reported that some additives may contribute to CCD formation. Therefore, a standardized bench engine test method for CCDs needs to be developed in response to industry demands. Cooperative research between the Petroleum Association of Japan (PAJ) and the Japan Automobile Manufacturers Association, Inc. (JAMA), has led to the development of a 2.2L Honda engine dynamometer-based CCD test procedure to evaluate CCDs from fuel additives. Ten automobile manufacturers, nine petroleum companies and the Petroleum Energy Center joined the project, which underwent PAJ-JAMA round robin testing. This paper describes the CCD test development activities, which include the selection of an engine and the determination of the optimum test conditions and other test criteria.
Technical Paper

Thermal Fatigue Life Prediction for Stainless Steel Exhaust Manifold

1998-02-23
980841
This paper describes the application of a life prediction method for stainless steel exhaust manifolds. Examination of the exhaust manifold cracks indicated that many of the failures could be attributed to out-of-phase thermal fatigue due to compressive strains that occur at high temperatures. Therefore, the plastic strain range was used as the crack initiation criteria. In addition, the comparison of the calculated thermal fatigue stress-strain hysteresis to the experimental hysteresis made it clear that it was essential to use the stress-strain data that was obtained through tensile and compression testing by keeping the test specimens at the maximum temperature of the thermal fatigue test mode. A finite element crack prediction method was developed using the aforementioned material data and good results were obtained.
Technical Paper

A Study of Additive Effects on ATF Frictional Properties Using New Test Methods

1990-10-01
902150
A new test machine has been developed which can evaluate vibration due to stick-slip using an actual full-scale clutch pack. Using this machine, a static breakaway friction coefficient measurement test method and a stick-slip test method have been established. Both methods have been shown to provide results which correlate with the results from both a full-scale assembly test and a vehicle shudder evaluation test. The evaluation of the frictional properties of commercial oils using these test methods showed that the static breakaway friction coefficient and the stick-slip properties have generally contradictory performance to each other for automatic transmission. The study of the frictional properties for typical additives and an analysis of the surface of the steel plates with ESCA (Electron Spectroscopy for Chemical Analysis) showed that the frictional properties are significantly affected by the additives adsorbed on the clutch plate sliding surface.
Technical Paper

Development of alloy cast iron for press die

2000-06-12
2000-05-0194
This paper describes the development of alloy cast iron that can be used for the cutting edges of the trimming die of a press die. Usually, a block of tool steel or steel casting is inserted at the cutting edge of the trimming die of a press die. However, we unified the structure part and the cutting-edge part of a press die with alloy cast iron. As it can''t bear as the cutting edge in this state, the cutting edge is processed by flame-hardening. After the flame- hardening, we developed the alloy cast iron so that enough hardness may be obtained by natural air cooling. Thereby, the machining of the installation seat of the cutting edge decreased and the expense of dies has been reduced.
Technical Paper

Fatigue Life Prediction on Rough Road Using Full Vehicle Co-simulation Model with Suspension Control

2010-04-12
2010-01-0952
A full vehicle multi-body dynamic (MBD) model with suspension control system is developed for fatigue life prediction under rough road condition. The model consists of tires, a trimmed body, heavy attached parts, powertrain, suspension, joints, and a driver model, and includes a suspension control system that varies characteristics of the suspension according to the rough road inputs. For tires, a commercial MBD tire model is employed with identifiable parameters. The models are simulated to run on the optically measured road surface of the proving ground. Apart from the trimmed body, several important heavy attached parts are modeled separately, that represent dynamic behavior that induces complex body input load. These parts, along with suspension and powertrain systems are connected to the body using nonlinear elements such as joints, springs, and dampers. Contact conditions are used to represent mount bushing, hood lock, stopper rubber, etc.
Technical Paper

Development of High-Strength Aluminum Piston Material

2010-04-12
2010-01-0220
Mass reduction of parts is growing in importance as a means for reducing CO2 emissions from vehicles.The aim of the present research was to contribute to further mass reduction of pistons by developing a new aluminum casting material with highest level of fatigue strength. This goal was achieved using a development concept of creating a homogeneous structure in which Ti was added to create a fine structure and appropriate quantities of Fe and Mn were added to form a compound that is stable at high temperatures. Stand-alone tests of prototype pistons fabricated using the developed material show that the material is 14% stronger than the conventional material, thereby enabling increases in power and mass reduction.
Technical Paper

Development of New Concept Iridium Plug

2001-01-05
2001-01-1201
In the field of automotive gasoline engines, new products aiming at greater fuel economy and cleaner exhaust gases are under development with the aim of preventing environmental destruction. Severe ignition environments such as lean combustion, stronger charge motion, and large quantities of EGR require ever greater combustion stability. In an effort to meet these requirements, an iridium plug has been developed that achieves high ignitability and long service life through reduction of its diameter, using a highly wear-resistant iridium alloy as the center electrode.(1)(2) Recently, direct injection engines have attracted attention. In stratified combustion, a feature of the direct injection engine, the introduction of rich air-fuel mixtures in the vicinity of the plug ignition region tends to cause carbon fouling. This necessitates plug carbon fouling resistance.
Technical Paper

Development of Multi-Layer Plastic Membrane (Bladder Membrane) for Vapor Reducing Fuel Tank

2001-03-05
2001-01-1120
The Vapor Reducing Fuel Tank System (Bladder Tank System) using a flexible plastic membrane (Bladder Membrane) was newly developed in order to reduce the amount of vaporized gasoline in a steel fuel tank. This Bladder Membrane is flexible to expand in proportion to a fuel volume and prevents the permeation of the vaporized gasoline. As a result of our initial study for various materials, we decided to apply a multi-layer plastic material which could achieve both low fuel permeability and good flexibility. This multi-layer material consists of polyethylene(PE) for structural material and polyamide(PA) for low permeability. The modulus of the PE needs to achieve a sufficient flexibility in order to keep the movement of the membrane. While PA material must have not only low fuel permeability but also strong adhesion with the structural material of PE. We also clarify the membrane design to keep a good flexibility and to reduce a strain.
Technical Paper

Flow Noise Reduction upon Quick Opening the Throttle

2001-04-30
2001-01-1429
With the advance in modularization of engine parts in recent years, there is increased use of plastic-made products in air intake systems. Plastic-made intake manifolds (Fig. 1) provide many advantages including reduced weight, reduced cost, and lower intake air temperatures. However, these manifolds have one disadvantage when compared with conventional aluminum-made intake manifolds, in that they transmit more noise because of their lower material density. For example, plastic intake manifolds of early development often generate flow noise when the throttle is opened quickly. With conventional aluminum intake manifolds, this flow noise had generated, but was not heard. This flow noise is presumed to be generated because of high-speed airflow generated when the throttle is opened quickly, but the mechanism of this noise generation has not been clarified.
Technical Paper

Development of Non-Lead-Added Free-Cutting Steel for Automobile Parts

2004-03-08
2004-01-1527
A new, free-cutting steel, hereafter referred to as “non-lead-added free-cutting steel”, has been developed with the intention of replacing currently applied lead containing free cutting steel. The ultimate goal of this project is to provide a new lead-free steel grade that will contribute to the removal of environmentally harmful substances from automobile parts. In this project, we have targeted the development of a material that would demonstrate levels of machinability and other mechanical properties equivalent to those of the conventional free-cutting steel to which sulfur (S), lead (Pb) and calcium (Ca) or combinations, thereof have been added. The fine dispersion of sulfide, modified by adding Mg and Ca, is most effective in enhancing the chip breakability that would otherwise deteriorate due to the absence of lead. The practical application of the non-lead-added free-cutting steel has rendered the goal of total removal of lead from special steel products highly obtainable.
Technical Paper

New Technology of Manufacturing for Coil Springs Used in Automotive Suspensions

2002-03-04
2002-01-0318
Recently, the following two new items are strongly required for coil springs used in automotive suspensions. One of them is the control of the force action line of the spring. The second item is to design the geometry of the spring so that the spring can be installed within the space allowed. In order to meet these demands, precise design and production technology is required. However, it has been difficult to produce the springs exactly as they are designed. The developed CAD-CAM system is capable of materializing the designed geometry of the spring without the help of workers' skills and experiences. This system allows us to automatically generate NC data for coiling from the geometry of the spring obtained by the finite element analysis.
Technical Paper

Improvement of NOx Storage-Reduction Catalyst

2002-03-04
2002-01-0732
In order to further improve the performance of NOx storage-reduction catalysts (NSR catalysts), focus was placed on their high temperature performance deterioration via sulfur poisoning and heat deterioration. The reactions between the basicity or acidity of supports and the storage element, potassium, were analyzed. It was determined that the high temperature performance of NSR catalysts is enhanced by the interaction between potassium and zirconia, which is a basic metal oxide. Also, a new zirconia-titania complex metal oxides was developed to improve high temperature performance and to promote the desorption of sulfur from the supports after aging.
Technical Paper

Development of Engine Valve Seats Directly Deposited onto Aluminum Cylinder Head by Laser Cladding Process

1992-02-01
920571
A new technologies for manufacturing of engine valve seats have been developed. This process, different from the conventional method that valve seats made of sintered alloy were press-fit into the cylinder head, is directly formed valve seats onto cylinder head by using the laser cladding technique. In order to develope the cylinder head with laser cladding valve seats, the laser cladding technology by which copper based alloy is deposited onto aluminum alloy with little dilution and stable bead has been established. And the unique cladding alloy, which is two phases in the liquid stage and in which iron or molybdenum rich hard particles are dispersed in the solid state, has been developed. Based on this technique, the practical process has been successfully completed.
X