Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Development of Exhaust and Evaporative Emissions Systems for Toyota THS II Plug-in Hybrid Electric Vehicle

2010-04-12
2010-01-0831
Exhaust and evaporative emissions systems have been developed to match the characteristics and usage of the Toyota THS II plug-in hybrid electric vehicle (PHEV). Based on the commercially available Prius, the Toyota PHEV features an additional external charging function, which allows it to be driven as an electric vehicle (EV) in urban areas, and as an hybrid electric vehicle (HEV) in high-speed/high-load and long-distance driving situations. To reduce exhaust emissions, the conventional catalyst warm up control has been enhanced to achieve emissions performance that satisfies California's Super Ultra Low Emissions Vehicle (SULEV) standards in every state of battery charge. In addition, a heat insulating fuel vapor containment system (FVS) has been developed using a plastic fuel tank based on the assumption that such a system can reduce the diffusion of vapor inside the fuel tank and the release of fuel vapor in to the atmosphere to the maximum possible extent.
Journal Article

Development of Clean Diesel NOx After-treatment System with Sulfur Trap Catalyst

2010-04-12
2010-01-0303
Diesel engines with relatively good fuel economy are known as an effective means of reducing CO₂ emissions. It is expected that diesel engines will continue to expand as efforts to slow global warming are intensified. Diesel particulate and NOx reduction system (DPNR), which was first developed in 2003 for introduction in the Japanese and European markets, shows high purification performance which can meet more stringent regulations in the future. However, it is poisoned by sulfur components in exhaust gas derived from fuel and lubricant. We then developed the sulfur trap DPNR with a sulfur trap catalyst that traps sulfur components in the exhaust gas. High purification performance could be achieved with a small amount of platinum group metal (PGM) due to prevention of sulfur poisoning and thermal deterioration.
Journal Article

Simultaneous Reduction of NOx and PM in Diesel Exhaust Based on Electrochemical Reaction

2010-04-12
2010-01-0306
The emission regulations for diesel engines are continually becoming stricter to reduce pollution and conserve energy. To meet these increasingly stringent regulations, a new exhaust after-treatment device is needed. Recently, the authors proposed the simultaneous electrochemical reduction (ECR) system for diesel particulate matter (PM) and NOx. In this method, a gas-permeable electrochemical cell with a porous solid oxide electrolyte is used for PM filtering on the anode. Alkaline earth metal is coated on the cathode for NOx storage. Application of voltage to both electrodes enables the simultaneous reduction of PM and NOx by the forced flow of oxygen ions from the cathode to the anode (oxygen pumping). In this study, the basic characteristics of the ECR system were investigated, and a disk-shaped electrochemical cell was evaluated.
Journal Article

Measurement of Piston Secondary Motion Using the New Digital Telemeter

2013-04-08
2013-01-1708
The authors have developed a measurement technique using a new digital telemeter which measures the piston secondary motion as ensuring high accuracy while under the operation. We applied this new digital telemeter to several measurements and analysis on the piston secondary motion that can cause piston noises, and here are some of the results from our measurement. We have confirmed that these piston motions vary by only several tenths of millimeter changes of the piston specifications such as the piston-pin offset and the center of gravity of the piston. As in other cases, we have found that a mere change of pressure in the crankcase or the amount of lubricating oil supplied on the cylinder bore varies the piston motion that may give effect on the piston noises.
Journal Article

New Combustion Concept for Turbocharged Gasoline Direct-Injection Engines

2014-04-01
2014-01-1210
The advantages of gasoline direct-injection are intake air cooling due to fuel vaporization which reduces knocking, additional degrees of freedom in designing a stratified injection mixture, and capability for retarded ignition timing which shortens catalyst light-off time. Stratified mixture combustion designs often require complicated piston shapes which disturb the fluid flow in the cylinder, leading to power reduction, especially in turbocharged gasoline direct-injection engines. Our research replaced the conventional shell-type shallow cavity piston with a dog dish-type curved piston that includes a small lip to facilitate stratification and minimize flow disturbance. As a result, stable stratified combustion and increased power were both achieved.
Journal Article

Development of HEV Engine Start-Shock Prediction Technique Combining Motor Generator System Control and Multi-Body Dynamics (MBD) Models

2013-05-13
2013-01-2007
Previous reports have already described the details of engine start-shock and the mechanism of vibration mechanism in a stationary vehicle. This vibration can be reduced by optimized engine and motor generator vibration-reduction controls. A prediction method using a full-vehicle MBD model has also been developed and applied in actual vehicle development. This paper describes the outline of a new method for the hybrid system of mechanical power split device with two motors that predicts engine start-shock when the vehicle is accelerating while the engine is stopped. It also describes the results of mechanism analysis and component contribution analysis. This method targets engine start-shock caused by driving torque demand during acceleration after vehicle take-off. The hybrid control system is modeled by MATLAB/Simulink. A power management and motor generator control program used in actual vehicles is installed into the main part of the control system model.
Technical Paper

Model Based Control for Premixed Charge Compression Ignition Diesel Engine

2020-04-14
2020-01-1150
Premixed charge compression ignition (PCCI) combustion is effective in reducing harmful exhaust gas and improving the fuel consumption of diesel engines [1]. However, PCCI combustion has a problem of exhibiting lower combustion stability than diffusive combustion [2, 3], which makes it challenging to apply to mass production engines. Its low combustion stability problem can be overcome by implementing complicated injection control strategies that account for variations in environmental and engine operating conditions as well as transient engine conditions, such as turbocharging delay, exhaust gas recirculation (EGR) delay, and intake air temperature delay. Although there is an example where the combustion mode is switched according to the intake O2 fraction [4], it requires a significant number of engineering-hours to calibrate multiple combustion modes. And besides, such switching combustion modes tends to have a risk of discontinuous combustion noise and torque.
Journal Article

Emissions Reduction Potential of Extremely High Boost and High EGR Rate for an HSDI Diesel Engine and the Reduction Mechanisms of Exhaust Emissions

2008-04-14
2008-01-1189
The effects of an increasing boost pressure, a high EGR rate and a high injection pressure on exhaust emissions from an HSDI (High Speed Direct Injection) diesel engine were examined. The mechanisms were then investigated with both in-cylinder observations and 3DCFD coupled with ϕT-map analysis. Under a high-load condition, increasing the charging efficiency combined with a high injection pressure and a high EGR rate is an effective way to reduce NOx and soot simultaneously, which realized an ultra low NOx of 16ppm at 1.7MPa of IMEP (Indicated Mean Effective Pressure). The flame temperature with low NOx and low soot emissions is decreased by 260K from that with conventional emissions. Also, the distribution of the fuel-air mixture plot on a ϕT-map is moved away from the NOx and soot formation peninsula, compared to the conventional emissions case.
Journal Article

Study of Diesel Engine System for Hybrid Vehicles

2011-08-30
2011-01-2021
In this study, we combined a diesel engine with the Toyota Hybrid System (THS). Utilizing the functions of the THS, reducing engine friction, lowering the compression ratio, and adopting a low pressure loop exhaust gas recirculation system (LPL-EGR) were examined to achieve both low fuel consumption and low nitrogen oxides (NOx) emissions over a wide operating range. After applying this system to a test vehicle it was verified that the fuel economy greatly surpassed that of a conventional diesel engine vehicle and that NOx emissions could be reduced below the value specified in the Euro 6 regulations without DeNOx catalysts.
Journal Article

Decoupled 3D Moment Control for Vehicle Motion Using In-Wheel Motors

2013-04-08
2013-01-0679
Vehicles equipped with in-wheel motors are being studied and developed as a type of electric vehicle. Since these motors are attached to the suspension, a large vertical suspension reaction force is generated during driving. Based on this mechanism, this paper describes the development of a method for independently controlling roll and pitch as well as yaw using driving force distribution control at each wheel. It also details the theoretical calculation of a method for decoupling the dynamic motions. Finally, it describes the application of these 3D dynamic motion control methods to a test vehicle and the confirmation of the performance improvement.
Technical Paper

Development of Abradable Flame Spray Coating Technology

1991-02-01
910400
The authors, et al. have succeeded in the practical application of the abradable flame spray coating, used in aircraft engines for the prevention of air leakage and the improvement of efficiency, to automobile turbochargers for the first time in the world. Two layers consisting of a bond coated layer and an abradable layer used to be coated by separate spray nozzles under the conventional technique. In this paper, equations of relations between various flame spray coating conditions and the quality of coated film, which were derived from measured results, will be described. Flame spray coating conditions, that allow the double layer coating by the same spray nozzle, have been determined for each layer. Temperatures and speeds of the flame were measured by means of two-color type high-speed cameras, and equations of their relations with the flame spray coating conditions are derived from the measured result.
Journal Article

A New Generation of Optically Accessible Single-Cylinder Engines for High-speed and High-load Combustion Analysis

2011-08-30
2011-01-2050
Over the last few decades, in-cylinder visualization using optically accessible engines has been an important tool in the detailed analysis of the in-cylinder phenomena of internal combustion engines. However, most current optically accessible engines are recognized as being limited in terms of their speed and load, because of the fragility of certain components such as the elongated pistons and transparent windows. To overcome these speed and load limits, we developed a new generation of optically accessible engines which extends the operating range up to speeds of 6000 rpm for the SI engine version, and up to in-cylinder pressures of 20 MPa for the CI engine version. The main reason for the speed limitation is the vibration caused by the inertia force arising from the heavy elongated piston, which increases with the square of the engine speed.
Journal Article

Effects of Hydrotreated Vegetable Oil (HVO) as Renewable Diesel Fuel on Combustion and Exhaust Emissions in Diesel Engine

2011-08-30
2011-01-1954
The effects of Hydrotreated vegetable oil (HVO) on combustion and emission characteristics in a diesel engine were investigated by using spray analyzer, engine dynamometer and vehicle tests. Spray analysis showed that spray characteristics was virtually the same for HVO and diesel. From the results of the engine dynamometer and the vehicle tests, it was found that the high cetane number and the zero aromatics of HVO could reduce in HC and PM emissions. Moreover, as a result of optimized engine calcification, HVO is capable of improving partial fuel consumption and full-load torque. These results indicate that HVO has beneficial fuel characteristics for diesel engine.
Journal Article

Study of the Impact of High Biodiesel Blends on Engine Oil Performance

2011-08-30
2011-01-1930
In Biodiesel Fuel Research Working Group(WG) of Japan Auto-Oil Program(JATOP), some impacts of high biodiesel blends have been investigated from the viewpoints of fuel properties, stability, emissions, exhaust aftertreatment systems, cold driveability, mixing in engine oils, durability/reliability and so on. This report is designed to determine how high biodiesel blends affect oil quality through testing on 2005 regulations engines with DPFs. When blends of 10-20% rapeseed methyl ester (RME) with diesel fuel are employed with 10W-30 engine oil, the oil change interval is reduced to about a half due to a drop in oil pressure. The oil pressure drop occurs because of the reduced kinematic viscosity of engine oil, which resulting from dilution of poorly evaporated RME with engine oil and its accumulation, however, leading to increased wear of piston top rings and cylinder liners.
Journal Article

Injection Nozzle Coking Mechanism in Common-rail Diesel Engine

2011-08-30
2011-01-1818
The hole diameter of injection nozzles in diesel engines has become smaller and the nozzle coking could potentially cause injection characteristics and emissions to deteriorate. In this research, engine tests with zinc-added fuels, deposit analyses, laboratory tests and numerical calculations were carried out to clarify the deposit formation mechanisms. In the initial phase of deposit formation, lower zinc carboxylate formed close to the nozzle hole outlet by reactions between zinc in the fuel and lower carboxylic acid in the combustion gas. In the subsequent growth phase, the main component changed to zinc carbonate close to nozzle hole inlet by reactions with CO₂ in the combustion gas. Metal components and combustion gases are essential elements in the composition of these deposits. One way of removing these deposits is to utilize cavitations inside the nozzle holes.
Journal Article

Analysis of Piston Friction - Effects of Cylinder Bore Temperature Distribution and Oil Temperature

2011-08-30
2011-01-1746
Hybrid vehicles (HVs) are becoming more widely used. Since HVs supplement engine drive with motor power, the lubricant oil temperature remains at a lower level than in a conventional gasoline vehicle. This study analyzed the effect of cylinder bore temperature and lubricant oil temperature on engine friction. The results showed that, although the lubricant oil temperature was not relevant, the bore temperature had significant effect on piston friction. It was found that raising the temperature of the middle section of the cylinder bore was the most effective way of reducing piston friction.
Journal Article

Research into Engine Friction Reduction under Cold Conditions - Effect of Reducing Oil Leakage on Bearing Friction

2014-04-01
2014-01-1662
Fuel efficiency improvement measures are focusing on both cold and hot conditions to help reduce CO2 emissions. Recent technological trends for improving fuel economy such as hybrid vehicles (HVs), engine start and stop systems, and variable valve systems feature expanded use of low-temperature engine operation regions. Under cold conditions (oil temperature: approximately 30°C), fuel consumption is roughly 20% greater than under hot conditions (80°C). The main cause of the increased friction under cold conditions is increased oil viscosity. This research used the motoring slipping method to measure the effect of an improved crankshaft bearing, which accounts for a high proportion of friction under cold conditions. First, the effect of clearance was investigated. Although increasing the clearance helped to decrease friction due to the oil wedge effect, greater oil leakage reduced the oil film temperature increase generated by the friction.
Journal Article

Pre-Ignition of Gasoline-Air Mixture Triggered by a Lubricant Oil Droplet

2014-10-13
2014-01-2627
This paper presents the effects of a lubricant oil droplet on the start of combustion of a fuel-air mixture. Lubricant oil is thought to be a major source of low-speed pre-ignition in highly boosted spark ignition engines. However, the phenomenon has not yet been fully understood because its unpredictability and the complexity of the mixture in the engine cylinder make analysis difficult. In this study, a single oil droplet in a combustion cylinder was considered as a means of simplifying the phenomenon. The conditions under which a single oil droplet ignites earlier than the fuel-air mixture were investigated. Tests were conducted by using a rapid compression expansion machine. A single oil droplet was introduced into the cylinder through an injector developed for this study. The ignition and the flame propagation were observed through an optical window, using a high-speed video camera.
Technical Paper

Effect of California Phase 2 Reformulated Gasoline Specifications on Exhaust Emission Reduction; Part 3

1997-10-01
972851
In order to investigate the effect of sulfur and distillation properties on exhaust emissions, emission tests were carried out using a California Low Emission Vehicle (LEV) in accordance with the 1975 Federal Test Procedure ('75 FTP). To study the fuel effect on the exhaust emissions from different systems, these test results were compared with the results obtained from our previous studies using a 92MY vehicle for California Tier 1 standards and a 94MY vehicle for California TLEV standards. (1)(2) First, the sulfur effect on three regulated exhaust emissions (HC, CO and NOx) was studied. As fuel sulfur was changed from 30 to 300 ppm, the exhaust emissions from the LEV increased about 20% in NMHC, 17% in CO and 46% in NOx. To investigate the recovery of the sulfur effect, the test fuel was changed to 30 ppm sulfur after the 300 ppm sulfur tests. The emission level did not recover to that of the initial 30 ppm sulfur during three repeats of the FTP.
Technical Paper

Two-Dimensional Temperature Measurements in Engine Combustion Using Phosphor Thermometry

2007-07-23
2007-01-1883
A phosphor thermometry, for measurements of two-dimensional gas-phase temperature was examined in turbulent combustion in an engine. The reasonable temperature deviation and the agreement with calculated data within 5% precision were achieved by single-shot images in the ignition process of compression ignition engine. Focusing on the local flame kernel, the flame structure could be quantitatively given by the temperature. It became evident that the HCCI flame kernels had 1-3 mm diameter and the isolated island structures. Subsequently, the HTR zone consisted of the combined flame kernels near TDC.
X