Refine Your Search

Topic

Affiliation

Search Results

Journal Article

Improvement of Ride Comfort by Unsprung Negative Skyhook Damper Control Using In-Wheel Motors

2016-04-05
2016-01-1678
Vehicles equipped with in-wheel motors (IWMs) are capable of independent control of the driving force at each wheel. These vehicles can also control the motion of the sprung mass by driving force distribution using the suspension reaction force generated by IWM drive. However, one disadvantage of IWMs is an increase in unsprung mass. This has the effect of increasing vibrations in the 4 to 8 Hz range, which is reported to be uncomfortable to vehicle occupants, thereby reducing ride comfort. This research aimed to improve ride comfort through driving force control. Skyhook damper control is a typical ride comfort control method. Although this control is generally capable of reducing vibration around the resonance frequency of the sprung mass, it also has the trade-off effect of worsening vibration in the targeted mid-frequency 4 to 8 Hz range. This research aimed to improve mid-frequency vibration by identifying the cause of this adverse effect through the equations of motion.
Journal Article

Development of New Electronically Controlled Hydraulic Unit for Various Applications

2016-04-05
2016-01-1660
The use of hybrid, fuel cell electric, and pure electric vehicles is on the increase as part of measures to help reduce exhaust gas emissions and to help resolve energy issues. These vehicles use regenerative-friction brake coordination technology, which requires a braking system that can accurately control the hydraulic brakes in response to small changes in regenerative braking. At the same time, the spread of collision avoidance support technology is progressing at a rapid pace along with a growing awareness of vehicle safety. This technology requires braking systems that can apply a large braking force in a short time. Although brake systems that have both accurate hydraulic control and large braking force have been developed in the past, simplification is required to promote further adoption.
Journal Article

Technical Development of Electro Magnetic Compatibility for Plug-in Hybrid Vehicle / Electric Vehicle Using Wireless Power Transfer System

2016-04-05
2016-01-1161
In 2007, researchers at the Massachusetts Institute of Technology successfully completed a Wireless Power Transfer (WPT) experiment. Ever since, interest in WPT has been growing. At Toyota, we have been developing the underlying technology of a WPT system. Simultaneously we have been working with regulatory committees to create a standard for WPT. In particular, there are concerns that WPT’s radiated emissions could cause harm to humans and the neighboring electronic equipment. There are many challenges that need to be overcome, but a key concern is understanding WPT’s electromagnetic compatibility (EMI: Electro-Magnetic Interference and EMF: Electro-Magnetic Field). In this paper, we show the technical issues, the evaluation method, and the development status of EMI and EMF on PHVs/EVs when using WPT. For Electromagnetic interference (EMI) performance, we investigated both an open area test site and an electromagnetic anechoic chamber as evaluation environments.
Journal Article

Pedestrian/Bicyclist Limb Motion Analysis from 110-Car TASI Video Data for Autonomous Emergency Braking Testing Surrogate Development

2016-04-05
2016-01-1456
Many vehicles are currently equipped with active safety systems that can detect vulnerable road users like pedestrians and bicyclists, to mitigate associated conflicts with vehicles. With the advancements in technologies and algorithms, detailed motions of these targets, especially the limb motions, are being considered for improving the efficiency and reliability of object detection. Thus, it becomes important to understand these limb motions to support the design and evaluation of many vehicular safety systems. However in current literature, there is no agreement being reached on whether or not and how often these limbs move, especially at the most critical moments for potential crashes. In this study, a total of 832 pedestrian walking or cyclist biking cases were randomly selected from one large-scale naturalistic driving database containing 480,000 video segments with a total size of 94TB, and then the 832 video clips were analyzed focusing on their limb motions.
Journal Article

Development of New IGBT to Reduce Electrical Power Losses and Size of Power Control Unit for Hybrid Vehicles

2017-03-28
2017-01-1244
One way to improve the fuel efficiency of HVs is to reduce the losses and size of the Power Control Unit (PCU). To achieve this, it is important to reduce the losses of power devices (such as IGBTs and FWDs) used in the PCU since their losses account for about 20% of the total loss of an HV. Furthermore, another issue when reducing the size of power devices is ensuring the thermal feasibility of the downsized devices. To achieve the objectives of the 4th generation PCU, the following development targets were set for the IGBTs: reduce power losses by 19.8% and size by 30% compared to the 3rd generation. Power losses were reduced by the development of a new Super Body Layer (SBL) structure, which improved the trade-off relationship between switching and steady-state loss. This trade-off relationship was improved by optimizing the key SBL concentration parameter.
Journal Article

Development of Test Method to Evaluate Aggressiveness Focusing on Stiffness and Interaction: Part 2

2011-04-12
2011-01-0547
Test methods to evaluate vehicle compatibility are being studied worldwide. Compatibility performance is central in securing mutual protection in collisions between large and small vehicles. To consider compatibility performance, good structural interaction and stiffness matching are important. A test method using a novel moving deformable barrier (MDB) was developed to evaluate compatibility performance that includes consideration of both structural interaction and stiffness matching. This new barrier has the following features to represent an offset vehicle-to-vehicle collision with a compact car. The barrier width is divided at the lower rail position of the compact car, and the layer that simulates the characteristics of vehicle sections toward the interior is harder than the outward layer. This varying stiffness of the MDB helps simulate the horizontal interaction performance that occurs in real-world crashes.
Journal Article

Cooling Loss Reduction of Highly Dispersed Spray Combustion with Restricted In-Cylinder Swirl and Squish Flow in Diesel Engine

2012-04-16
2012-01-0689
In diesel engines with a straight intake port and a lipless cavity to restrict in-cylinder flow, an injector with numerous small-diameter orifices with a narrow angle can be used to create a highly homogeneous air-fuel mixture that, during PCCI combustion, dramatically reduces the NOX and soot without the addition of expensive new devices. To further improve this new combustion concept, this research focused on cooling losses, which are generally thought to account for 16 to 35% of the total energy of the fuel, and approaches to reducing fuel consumption were explored. First, to clarify the proportions of convective heat transfer and radiation in the cooling losses, a Rapid Compression Machine (RCM) was used to measure the local heat flux and radiation to the combustion chamber wall. The results showed that though larger amounts of injected fuel increased the proportion of heat losses from radiation, the primary factor in cooling losses is convective heat transfer.
Journal Article

Benefit Estimation of a Lane Departure Warning System using ASSTREET

2012-04-16
2012-01-0289
It is known that the collisions caused by lane departure events account for range of percentages among the countries studied. To help prevent such collisions, the Lane Departure Warning (LDW) system has started to be introduced in production vehicles, but there is little research on its benefits and limitations so far. In this paper we performed an in-depth analysis of the collisions and driver-related essential variables for the lane-departure collision scenarios and demonstrated the benefit estimation process. The benefit of the LDW system is estimated by comparing lane departure events when the vehicle has no LDW, and how they change with the addition of LDW. The event without LDW was modeled in 5 phases: (1) before departure, (2) starting of the departure, (3) departed the lane, (4) at the impact with an object, and, (5) after the impact. “An extensive analysis was conducted of traffic crash data compiled by the Institute for Traffic Accident Research and Data Analysis (ITARDA).
Journal Article

Development of iQ with CVT for USA

2011-04-12
2011-01-1425
TOYOTA has developed the iQ with a 1.3L engine for the Scion brand in USA. Due to the importance of fun-to-drive factor for the Scion brand image, a responsive driving performance is required even with compact packaging and a small engine. In addition, because of the recent attention to global-warming and energy issues on a global scale, development of vehicles with high fuel economy is one of the most important issues for a car manufacturer. Therefore, it is necessary for a vehicle to have both high driving performance and fuel economy. TOYOTA has adopted the CVT-i as the transmission for this purpose. The following were achieved by adopting the CVT-i as the transmission for the iQ(1.3L). 1 Responsive driving performance with shift changes without a time lag. 2 Compact transmission for efficient vehicle packaging 3 Class-leading fuel economy performance. Moreover, it was developed with adjustments for the US market by improving the shift schedule for a linear acceleration feel.
Journal Article

Development of High-Performance Driving Simulator

2009-04-20
2009-01-0450
A number of active safety systems are already developed to support drivers’ decision and action to help avoid accidents, but further enhancement of those active safety systems cannot be accomplished without increasing our understanding on driver behaviors and their interaction with vehicle systems. For this reason, a state-of-art driving simulator (DS) has been developed that creates very realistic scenarios as a means of realizing these requirements. The DS consists of a simulator cabin, turntable (inside the dome), a 6-DOF hexapod system, shakers (vehicle vertical vibration actuators), and a motion system capable of moving 35 meters longitudinally and 20 meters laterally. The system is also capable of projecting images of actual city streets and highways onto a 360° spherical screen inside of the dome. As a result, the DS is able to reproduce a driving environment that is very similar to real driving.
Technical Paper

Analysis of Personal Routing Preference from Probe Data in Cloud

2020-04-14
2020-01-0740
Routing quality always dominates the top 20% of in vehicle- navigation customer complaints. In vehicle navigation routing engines do not customize results based on customer behavior. For example, some users prefer the quickest route while some prefer direct routes. This is because in vehicle navigation systems are traditionally embedded systems. Toyota announced that new model vehicles in JP, CN, US will be connected with routing function switching from the embedded device to the cloud in which there are plenty of probe data uploaded from the vehicles. Probe data makes it possible to analyze user preferences and customize routing profile for users. This paper describes a method to analyze the user preferences from the probe data uploaded to the cloud. The method includes data collection, the analysis model of route scoring and user profiling. Furthermore, the evaluation of the model will be introduced at the end of the paper.
Journal Article

Development of a Test Method to Evaluate both Stiffness and Interaction of Compatibility Performance

2008-04-14
2008-01-0816
Compatibility is important in order to secure mutual protection in collisions between large and small vehicles. To enhance compatibility, good structural interaction and stiffness matching are important elements. This paper proposes a test method that uses a moving deformable barrier (MDB) to evaluate compatibility performance that includes not only structural interaction but also stiffness matching. This new deformable barrier is aimed at the simulation of offset Vehicle-to-Vehicle collisions with compact vehicles. This simulation is based on real world crash research, and takes into account three separate load interactions between the impacting vehicles. These areas of interaction include the impacting vehicle's power unit to the opposing vehicle's wheel, the impacting vehicle's lower rail to the opposing vehicle's lower rail, and the impacting vehicle's wheel to the opposing vehicle's power unit.
Journal Article

Analysis of Influence of Snow Melting Agents and Soil Components on Corrosion of Decorative Chrome Plating

2016-04-05
2016-01-0539
The dissolution and exfoliation of chromium plating specific to Russia was studied. Investigation and analysis of organic compounds in Russian soil revealed contents of highly concentrated fulvic acid. Additionally, it was found that fulvic acid, together with CaCl2 (a deicing agent), causes chromium plating corrosion. The fulvic acid generates a compound that prevents reformation of a passivation film and deteriorates the sacrificial corrosion effectiveness of nickel.
Journal Article

Development of Injury Probability Functions for the Flexible Pedestrian Legform Impactor

2012-04-16
2012-01-0277
The goal of this study was to develop injury probability functions for the leg bending moment and MCL (Medial Collateral Ligament) elongation of the Flexible Pedestrian Legform Impactor (Flex-PLI) based on human response data available from the literature. Data for the leg bending moment at fracture in dynamic 3-point bending were geometrically scaled to an average male using the standard lengths obtained from the anthropometric study, based on which the dimensions of the Flex-PLI were determined. Both male and female data were included since there was no statistically significant difference in bone material property. Since the data included both right censored and uncensored data, the Weibull Survival Model was used to develop a human leg fracture probability function.
Journal Article

Reaction Mechanism Analysis of Di-Air-Contributions of Hydrocarbons and Intermediates

2012-09-10
2012-01-1744
The details of Di-Air, a new NOx reduction system using continuous short pulse injections of hydrocarbons (HC) in front of a NOx storage and reduction (NSR) catalyst, have already been reported. This paper describes further studies into the deNOx mechanism, mainly from the standpoint of the contribution of HC and intermediates. In the process of a preliminary survey regarding HC oxidation behavior at the moment of injection, it was found that HC have unique advantages as a reductant. The addition of HC lead to the reduction or metallization of platinum group metals (PGM) while keeping the overall gas atmosphere in a lean state due to adsorbed HC. This causes local O₂ inhibition and generates reductive intermediate species such as R-NCO. Therefore, the specific benefits of HC were analyzed from the viewpoints of 1) the impact on the PGM state, 2) the characterization of intermediate species, and 3) Di-Air performance compared to other reductants.
Journal Article

Rubber Suspension Bushing Model Identified by General Design Parameters for Initial Design Phase

2018-04-03
2018-01-0693
This article proposes a rubber suspension bushing model considering amplitude dependence as a useful tool at the initial design phase. The purpose of this study is not to express physical phenomena accurately and in detail and to explore the truth academically, but to provide a useful design method for initial design phase. Experiments were carried out to verify several dynamic characteristics of rubber bushings under vibration up to a frequency of 100 Hz, which is an important frequency range when designing ride comfort performance. When dynamic characteristic theory and the geometrical properties of the force-displacement characteristic curve were considered using these dynamic characteristics as assumptions, an equation was derived that is capable of calculating the dynamic stiffness under an arbitrary amplitude by identifying only two general design parameters (dynamic stiffness and loss factor) under a reference amplitude.
Technical Paper

Development of a New High Orientation Paint System to Achieve Outstanding Real Metallic Designs

2020-04-14
2020-01-0899
Silver metallic colors with thin and smooth aluminum flake pigments have been introduced for luxury brand OEMs. Regarding the paint formulation for these types of colors, low non-volatile(NV) and high aluminum flake pigment contents are known as technology for high metallic appearance designs. However, there are two technical concerns. First is mottling which is caused by uneven distribution of the aluminum flake pigments in paint film and second is poor film property due to high aluminum pigment concentration in paint film. Therefore, current paint systems have limitation of paint design. As a countermeasure for those two concerns, we had investigated cellulose nanofiber (CNF) dispersion liquid as both the coating binder and rheology control agent in a new type of waterborne paint system. CNF is an effective rheology control agent because it has strong hydrogen bonds with other fiber surfaces in waterborne paint.
Technical Paper

Method of Improving Side Impact Protection Performance by Induction Hardening of Body Reinforcement Compatibility Between Safety and Weight Reduction in Body Engineering

1998-02-23
980550
A technique for induction-hardening local portions of vehicle body reinforcements press-formed of thin sheet steel has been developed, with the aim of ensuring occupant safety in a side collision. This technique for increasing the tensile strength of sheet steel was practically applied to the front floor cross member and center pillar reinforcement. Owing to this method, the weight of body reinforcements can be decreased. New induction-hardening systems have also been developed for the present technique. One is an apparatus which allows induction-hardening a part with a three-dimensionally curved surface. Another is a straightening quench technique used to retain the same dimensional accuracy as the original press-formed part.
Technical Paper

Development of the Brake Assist System

1998-02-23
980601
We investigated and analyzed the average vehicle-driver's braking behavior in panic situations by conducting vehicle tests that duplicated real world conditions that would require emergency braking performance. From our investigation, we have noticed that when panic braking is recognized, supplying additional braking power is effective for active safety. The Brake Assist System, which supplies full constant braking force when panic braking is recognized, is effective for drivers who cannot apply enough braking effort. However, in some case, such a system makes more experienced drivers uncomfortable because the deceleration caused by this full constant braking force might be different from their intentions. Considering these issues, we have developed the Brake Assist System that increases its controllability while reducing its discomfort. The TOYOTA RAUM has been available with the Brake Assist System since May 1997.
Technical Paper

Development of a Scanning Laser Radar for ACC

1998-02-23
980615
This paper introduces the cruise control system with distance control function, that is called Adaptive Cruise Control (ACC), that uses a scanning laser radar as a sensor to detect preceding vehicles. With the goal of increasing the driving convenience and comfort when compared to the conventional cruise control, lots of ACC systems have been proposed and developed. This paper presents ACC system using the scanning laser radar which was developed by Toyota, and describes the adaptation of the system specifications. This ACC system was able to greatly reduce the driver's work load, and increased the driver's convenience and comfort when operating the cruise controls system. In addition, we were able to design this system to be highly dependable and inexpensive and supply it to the market as a result of incorporating various ideas for improvements.
X