Refine Your Search

Topic

Author

Search Results

Technical Paper

Development of Ultra Low Viscosity 0W-8 Engine Oil

2020-04-14
2020-01-1425
Further fuel economy improvement of the internal combustion engine is indispensable for CO2 reduction in order to cope with serious global environmental problems. Although lowering the viscosity of engine oil is an effective way to improve fuel economy, it may reduce the wear resistance. Therefore, it is important to achieve both improved fuel economy and reliability. We have developed new 0W- 8 engine oil of ultra-low viscosity and achieved an improvement in fuel economy by 0.8% compared to the commercial 0W-16 engine oil. For this new oil, we reduced the friction coefficient under boundary lubrication regime by applying an oil film former and calcium borate detergent. The film former increased the oil film thickness without increasing the oil viscosity. The calcium borate detergent enhanced the friction reduction effect of molybdenum dithiocarbamate (MoDTC).
Journal Article

Development of a Highly Anti-Corrosive Organic-Inorganic Hybrid Paint

2016-04-05
2016-01-0540
A highly anti-corrosive organic-inorganic hybrid paint for automotive steel parts has been developed. The inorganic component included in the paint is silicon dioxide (SiO2), which has the capability to passivate zinc. By application of the paint on a trivalent chromatetreated zinc-plated steel sheet or a trivalent chromate-treated zinc-nickel-plated steel sheet, high anti-corrosion protection can be provided to steel materials. Particularly in the case of application over a zinc-nickel-plated steel sheet, 0 mm corrosion depth after a cyclic corrosion test (CCT) of 450 cycles was demonstrated.
Journal Article

Development of Paint Booth: “New Paint Mist Collection Method”

2016-04-05
2016-01-1258
1 Inside a paint booth to spray paint on vehicle bodies, bumpers, and other parts (hereinafter referred to as “works”), air whose temperature and humidity are controlled by air-conditioner is supplied by blower fans through filters. Dust-eliminated and regulated air flow is sent downward from top to bottom (hereinafter referred to as “downflow”) in the painting booth. Conventionally, paint which does not adhere to work in spraying (hereinafter referred to as “paint mist”) is collected while flowing at a high speed through a slit opening called venturi scrubber in a mixture of air and water. However, this mist collecting system using venturi scrubber requires a large space with a large amount of pressure loss while consuming substantial energy. By radically changing the mist collecting principle, we developed a new compact system with less pressure loss aiming to reduce energy consumption by 40% in a half-size booth.
Journal Article

Reduction of Heat Loss and Improvement of Thermal Efficiency by Application of “Temperature Swing” Insulation to Direct-Injection Diesel Engines

2016-04-05
2016-01-0661
The reduction of the heat loss from the in-cylinder gas to the combustion chamber wall is one of the key technologies for improving the thermal efficiency of internal combustion engines. This paper describes an experimental verification of the “temperature swing” insulation concept, whereby the surface temperature of the combustion chamber wall follows that of the transient gas. First, we focus on the development of “temperature swing” insulation materials and structures with the thermo-physical properties of low thermal conductivity and low volumetric heat capacity. Heat flux measurements for the developed insulation coating show that a new insulation material formed from silica-reinforced porous anodized aluminum (SiRPA) offers both heat-rejecting properties and reliability in an internal combustion engine. Furthermore, a laser-induced phosphorescence technique was used to verify the temporal changes in the surface temperature of the developed insulation coating.
Technical Paper

Development of a New High Orientation Paint System to Achieve Outstanding Real Metallic Designs

2020-04-14
2020-01-0899
Silver metallic colors with thin and smooth aluminum flake pigments have been introduced for luxury brand OEMs. Regarding the paint formulation for these types of colors, low non-volatile(NV) and high aluminum flake pigment contents are known as technology for high metallic appearance designs. However, there are two technical concerns. First is mottling which is caused by uneven distribution of the aluminum flake pigments in paint film and second is poor film property due to high aluminum pigment concentration in paint film. Therefore, current paint systems have limitation of paint design. As a countermeasure for those two concerns, we had investigated cellulose nanofiber (CNF) dispersion liquid as both the coating binder and rheology control agent in a new type of waterborne paint system. CNF is an effective rheology control agent because it has strong hydrogen bonds with other fiber surfaces in waterborne paint.
Technical Paper

Study of Future Engine Oil (First Report): Future Engine Oil Scenario

2007-07-23
2007-01-1977
In recent years, problems such as global warming, the depletion of natural resources, and air pollution caused by emissions are emerging on a global scale. These problems call for efforts directed toward the development of fuel-efficient engines and exhaust gas reduction measures. As a solution to these issues, performance improvements should be achieved on the oil that lubricates the sliding sections of engines. This report points to features required of future engine oil-such as contribution to fuel consumption, minimized adverse effects on the exhaust gas aftertreatment system, and improved reliability achieved by sludge reduction-and discusses the significance of these features. For engine oil to contribution of engine oil to lower fuel consumption, we examined the effects of reduced oil viscosity on friction using gasoline and diesel engines.
Technical Paper

Numerical Analysis of Flow in the Induction System of an Internal Combustion Engine -Multi-Dimensional Calculation Using a New Method of Lines

1990-02-01
900255
Multi-dimensional code has been developed to simulate the effect of geometry on mass flow rate and flow pattern in the induction system of an internal combustion engine. The unsteady compressible Navier-Stokes equations in general curvilinear coordinates are solved by a new method of lines. In the method of lines, the governing equations are spatially discretized by a finite difference approximation and the resulting system of ordinary differential equations is integrated. As a time integration scheme, we newly propose to use the rational Runge-Kutta scheme in order to efficiently simulate the flows in the induction system. The domain-decomposition technique is introduced so that body-fitted structured grid can be easily generated for such complex geometry as a real intake port shape. The present code is applied to 2 and 3 dimensional steady flows in intake port/cylinder assembly with a valve.
Technical Paper

The Development of Toyota Fantasy Print System

1998-09-29
982344
Recently, the demands of vehicle owners have become more diversified. This is particularly true in the paint appearance of the vehicle. Responding to these demands Toyota has developed an ink jet painting system, Toyota Fantasy Print System. This system can illustrate practically any picture which the customer desires. The system utilized a subtractive method of paint mixture which mixes or piles up these four permeable inks. The development of durable ink as well as equipment which can efficiently and effectively apply the ink onto the required contoured surface.
Technical Paper

Development of Anti Scratch Clear Coat

2008-04-14
2008-01-1461
“Anti-scratch performance” is the highest in customer's needs of paint. To achieve anti-acid and anti-scratch performance, we selected 2K-urethane because of a high degree of freedom in paint design. In addition, we have done a precise molecular design of the acrylic polyol and the isocyanate. As a result, “a highly durable, soft, fine-crosslinking paint film” was achieved, and “anti-scratch clear coat” that surpassed the current clear coats was developed.
Technical Paper

Hexagonal Cell Ceramic Substrates for Lower Emission and Backpressure

2008-04-14
2008-01-0805
Stringent emission regulations call for advanced catalyst substrates with thinner walls and higher cell density. However, substrates with higher cell density increase backpressure, thinner cell wall substrates have lower mechanical characteristics. Therefore we will focus on cell configurations that will show a positive effect on backpressure and emission performance. We found that hexagonal cells have a greater effect on emission and backpressure performance versus square or round cell configurations. This paper will describe in detail the advantage of hexagonal cell configuration versus round or square configurations with respect to the following features: 1 High Oxygen Storage Capacity (OSC) performance due to uniformity of the catalyst coating layer 2 Low backpressure due to the large hydraulic diameter of the catalyst cell 3 Quick light off characteristics due to efficient heat transfer and low thermal mass
Technical Paper

Material Consolidation for Automotive Interior and Exterior Parts through Development of a High Performance Material

1998-09-29
982410
Through a polymer design and precise morphology control, The Super Olefin Polymer, TSOP-1 and TSOP-5 were developed for the material consolidation of interior and exterior parts, respectively. Due to a good balance of TSOP performance, several conventional materials were consolidated into one material for each application. Accordingly, considerable amounts of weight reduction and cost savings have been obtained. In addition to the excellent recyclability of TSOP, the coated bumpers collected from the market were re-utilized through paint decomposition technology. The first dashboard construction, molded partially with foam-padded skin, was also realized. The current amount of TSOP used in a vehicle is about 30% of the total amount of plastic materials. Through the usage of TSOP, 70% of the material consolidation has been achieved.
Technical Paper

A Study of Mixed-FAME and Trace Component Effects on the Filter Blocking Propensity of FAME and FAME Blends

2010-10-25
2010-01-2116
Previous studies have investigated the impacts of biofuel usage on the performance, drivability and durability of modern diesel engines and exhaust after-treatment systems including test work with different types, concentrations and mixtures of bio fuel components. During this earlier work vehicle fuel filter blocking issues were encountered during a field trial using various types of EN 14214 compliant Fatty Acid Methyl Ester (FAME) blended into EN 590 diesel. This paper summarises a subsequent literature review that was carried out looking into potential causes of this filter blocking and further work that was then carried out to expand on the findings. From this, a laboratory study was carried out to assess the increase in fuel filter blocking tendency (FBT) when various FAMEs from mixed sources were blended into EN 590 diesel at different concentrations, including levels above those currently allowed in the European market.
Technical Paper

Metallic Powder Coating for Aluminum Wheels

2004-03-08
2004-01-1671
From the viewpoint of measures for environmental issues, the amount of solvents in paint for aluminum wheels needs to be minimized. Environmentally friendly powder coatings have been used widely for primer coating and clear coating, but there is no precedent for its use for base coating. This time, we optimized the condition of surface treatment of pigment and hardening behavior of constituent resin in the melting process and succeeded in developing a metallic powder coating for aluminum wheels that fulfills the appearance and the quality requirements of aluminum wheels.
Technical Paper

Post PVC Sound Insulating Underbody coating

2002-03-04
2002-01-0293
Underbody coating is used to prevent chipping damage of the automobile underbody and wheel well. Multi-functional material that gives sound insulating properties is called sound insulating underbody coating. This paper describes the development of underbody coating material with powdered acrylic composition as an alternative to polyvinyl chloride resin. The new material also has better foaming properties. It is possible to ensure excellent sound insulating performance with thin film. This multi-functional underbody coating is the first application in the world with weight reduction and cost saving, and in a more environmentally acceptable manner.
Technical Paper

Experience and Perspective of Hybrids

2002-10-21
2002-21-0068
The Prius, Toyota Motor Corporation’s mass-produced hybrid vehicle (HV), was launched in Japan, other Asian countries, North America and Europe, and has now been accepted into the global market. Following the Prius, the Estima Hybrid and the Crown Mild Hybrid, although being based on different systems were released into the Japanese market in 2001. Over 100,000 Toyota HVs are currently on the road, and this proves that HVs are considered practical and reliable vehicles, not special vehicles. HVs have advantages in fuel economy and exhaust gas emissions compared with conventional ICE vehicles. HVs with differing kinds of hybrid systems will be introduced into the market in the future, and will gain in popularity coexisting with ICE vehicles.
Technical Paper

Engine Starting System Development by Belt Drive Mechanism

2002-03-04
2002-01-1086
The basic concept of the Toyota mild hybrid system is to provide a smooth and reliable engine restarting method from an idling stop, while at the same time being able to drive all of the accessories during the idling stop. This concept has been realized and marketed for the first time in the world, by utilizing a newly developed simulation of belt behavior to optimize the specification of the belt and its peripheral parts.
Technical Paper

Development of Instantaneous Temperature Measurement Technique for Combustion Chamber Surface and Verification of Temperature Swing Concept

2016-04-05
2016-01-0675
To improve the thermal efficiency of an internal combustion engine, the application of ceramics to heat loss reduction in the cylinders has been studied [1-2]. The approach taken has focused on the low heat conductivity and high heat resistance of the ceramic. However, since the heat capacity of the ceramic is so large, there is a problem in that the wall temperature increases during the combustion cycle. This leads to a decrease in the charging efficiency, as well as knocking in gasoline engines. To overcome these problems, the application of thermal insulation without raising the gas temperature during the intake stroke has been proposed [3-4]. As a means of achieving this, we developed a "temperature swing heat insulation coating" [5, 6, 7, 8, 9]. This reduces the heat flux from the combustion chamber into the cooling water by making the wall temperature follow the gas temperature as much as possible during the expansion and exhaust strokes.
Technical Paper

CAE Methodology for Optimizing NVH, Functional Reliability, and Mass Reduction at Engine Concept Design Phase

2011-05-17
2011-01-1511
Due to the global economic downturn and higher environmental awareness, the social demands for low cost and fuel efficient vehicles are increasing. At the same time the engine power is increasing and customer expectations of reliability and NVH levels are increasing. To meet all the requirements, engineers are challenged to design light weight parts with higher performance. However, unconsidered mass reduction carries a risk of compromised NVH, Functional Reliability, and other functional demands. In order to resolve this contradiction, it is important to establish a basic structure with minimum necessary mass at the concept design phase, when there are still many degrees of freedom in the design space. Hence, a multi-objective optimization CAE methodology applicable for designing the basic structure of the Engine system was developed and is detailed below.
Technical Paper

Application of Structural Color Technology for Automotive Paint

2005-04-11
2005-01-0617
Currently, to achieve the desired design in automotive paint, absorption pigments, such as organic pigments, are used in combination with brilliant pigments (ex. aluminum or mica etc.). However, many beautiful colors exist in the world, especially in the natural world. Until now, automotive paints have not been able to replicate those colors. In this project, by first analyzing the coloring principles of the natural world, we have focused on the development of a previously non-existent coloring technology (structural color). By combining this with nanostructure control technology, we have established a radically new coloring process enabling the design of hues, chromaticity and reflection intensity. This technology has tangible results, as new pigments are available for paint formulations.
Technical Paper

Development of In Mold Coating Clear Coat Paint for Carbon Fiber Sheet Molding Compound Roof

2022-03-29
2022-01-0345
Carbon Fiber Reinforced Plastic (CFRP) is used for various products in the aerospace and sports industries due to its superior specific tensile strength and specific rigidity. With increasing attention to Carbon Neutrality (CN) in the world, vehicle electrification and lightweighting are expanding. As a result, the application of CFRP to luxury cars, electric cars, and sports cars, is increasing. For example, CFRP is used on Lexus LC and RC-F, and Toyota 86 GRMN. However, there are two technical concerns. The first is its durability, which caused by CFRP resin characteristic. The second is poor appearance, which is caused by CFRP surface pinholes. In order to secure good durability and surface appearance, CFRP must be pre-treated before painting (putty applied as a filler for plastic surface coverage, followed by surface sanding) and needs multiple painting steps. Current painted CFRP is not suitable for mass production due to this long and complicated process.
X