Refine Your Search

Topic

Author

Search Results

Journal Article

Diesel Exhaust Aftertreatment System Packaging and Flow Optimization on a Heavy-Duty Diesel Engine Powered Vehicle

2010-10-05
2010-01-1944
Diesel exhaust aftertreatment systems are required for meeting both EPA 2010 and final Tier 4 emission regulations while meeting the stringent packaging constraints of the vehicle. The aftertreatment system for this study consists of a fuel dosing system, mixing elements, fuel reformer, lean NOx trap (LNT), diesel particulate filter (DPF), and a selective catalytic reduction (SCR) catalyst. The fuel reformer is used to generate hydrogen (H₂) and carbon monoxide (CO) from injected diesel fuel. These reductants are used to regenerate and desulfate the LNT catalyst. NOx emissions are reduced using the combination of the LNT and SCR catalysts. During LNT regeneration, ammonia (NH₃) is intentionally released from the LNT and stored on the downstream SCR catalyst to further reduce NOx that passed through the LNT catalyst. This paper addresses system packaging and exhaust flow optimization for heavy-duty line-haul and severe service applications.
Journal Article

Simulation of Galvanic Corrosion of Aluminum Materials for Vehicles

2010-04-12
2010-01-0724
A simulation technology has been developed to enable prediction of galvanic corrosion in chassis parts where two different materials, iron and aluminum, come into contact with each other. When polarization curves representing a corrosive environment are input, this simulation technology calculates the corrosion current to flow and outputs the volume of aluminum corrosion to be formed near the iron-aluminum interface. The simulation makes it possible to predict the depth of corrosion that may occur in automobiles in the market.
Journal Article

Integration of Reformer Model Based Estimation, Control, and Diagnostics for Diesel LNT Based Aftertreatment Systems

2010-04-12
2010-01-0569
Future government emission regulations have lead to the development and implementation of advanced aftertreatment systems to meet stringent emission standards for both on-road and off-road vehicles. These aftertreatment systems require sophisticated control and diagnostic strategies to ensure proper system functionality while minimizing tailpipe NOx and PM emissions across all engine operating conditions. In this paper, an integrated algorithm design approach with controls and diagnostics for an aftertreatment system consisting of a fuel doser, fuel reformer, LNT, DPF, and SCR is discussed.
Journal Article

Medium-Duty Plug-in Hybrid Electric Vehicle for Utility Fleets

2010-10-05
2010-01-1933
Current concerns about climate change, energy security and record high oil prices have triggered high enthusiasm and push for plug-in vehicles. Widespread adoption of plug-in vehicles would result in significant reductions in CO2 emissions from transportation. It would also reduce our dependence on fossil fuels by replacing petroleum-sourced energy with renewable, domestically produced electricity. While a few OEMs have successfully launched hybrid vehicles and even toyed with plug-in hybrid solutions in the passenger car market segment, little attention has been placed on heavier commercial vehicles. Large utilities operate fleets of several hundred diesel-power trouble trucks to repair and maintain their transmission and distribution infrastructure. Medium-duty segment is over a million vehicles annually. These vehicles are typically driven in densely populated neighborhoods.
Journal Article

Independent Left and Right Rear Toe Control System

2014-04-01
2014-01-0063
Honda has developed an “Independent Left and Right Rear Toe Control System” that can achieve stable cornering performance and agile handling. We believe the issue that should be resolved in the next generation of ESC is the expansion of stability and agility into the general operation area. We examined how to accomplish this aim, and control of the independent rear toe angle was decided to be an appropriate method. In addition, a method for mounting the system without using a dedicated suspension was proposed. If left and right toe angles can be controlled independently, toe angle control and normal 4WS control become possible at the same time. In this paper, we will discuss the fundamental principle of independent toe angle control and the system configuration. Also, “INOMAMA Handling” (at driver's will) achieved by this system, as well as the fun and safe driving that are achieved as a result will be shown.
Journal Article

Development of an Electric-based Power Steering System

2015-04-14
2015-01-1567
In this research, a three degree-of-freedom (DOF) rack-type electric-based power steering (EPS) model is developed. The model is coupled with a three DOF vehicle model and includes EPS maps as well as non-linear attributes such as vibration and friction characteristics of the steering system. The model is simulated using Matlab's Simulink. The vibration levels are quantified using on-vehicle straight-line test data where strain-gauge transducers are placed in the tie-rod ends. Full vehicle kinematic and compliance tests are used to verify the total steering system stiffness levels. Frequency response tests are used to adjust tire cornering stiffness levels as well as the tire dynamic characteristics such that vehicle static gain and yaw natural frequency are achieved. On-center discrete sinusoidal on-vehicle tests are used to further validate the model.
Journal Article

Elementary Body Structure Analysis

2015-04-14
2015-01-1321
Recently vehicle development timeline is becoming shorter, so there is an urgent need to be able to develop vehicles with limited resources. This means the efficiency of the body structure development process must be improved. Specifically it is important to reduce the amount of design re-work required to meet performance targets as this can have a large influence on the body development time. In order to reduce the afore mentioned design re-work, we developed simple calculation models to apply a “V-Flow Development Process” to the preliminary stage design of the automobile body structure. The “V-Flow” advantages are as follows: (1) simple and easy to use, (2) defects are found at early stage, (3) avoids the downward flow of the defects. The advantage of preliminary stage design is that there is design flexibility since not many specifications have been determined yet.
Journal Article

The Influence of the Through-Thickness Strain Gradients on the Fracture Characterization of Advanced High-Strength Steels

2018-04-03
2018-01-0627
The development and calibration of stress state-dependent failure criteria for advanced high-strength steel (AHSS) and aluminum alloys requires characterization under proportional loading conditions. Traditional tests to construct a forming limit diagram (FLD), such as Marciniak or Nakazima tests, are based upon identifying the onset of strain localization or a tensile instability (neck). However, the onset of localization is strongly dependent on the through-thickness strain gradient that can delay or suppress the formation of a tensile instability so that cracking may occur before localization. As a result, the material fracture limit becomes the effective forming limit in deformation modes with severe through-thickness strain gradients, and this is not considered in the traditional FLD. In this study, a novel bending test apparatus was developed based upon the VDA 238-100 specification to characterize fracture in plane strain bending using digital image correlation (DIC).
Journal Article

Genetic Algorithm Based Gear Shift Optimization for Electric Vehicles

2016-06-17
2016-01-9141
In this paper, an optimization method is proposed to improve the efficiency of a transmission equipped electric vehicle (EV) by optimizing gear shift strategy. The idea behind using a transmission for EV is to downsize the motor size and decrease overall energy consumption. The efficiency of an electric motor varies with its operating region (speed/torque) and this plays a crucial role in deciding overall energy consumption of EVs. A lot of work has been done to optimize gear shift strategy of internal combustion engines (ICE) based automatic transmission (AT), and automatic-manual transmissions (AMT), but for EVs this is still a new area. In case of EVs, we have an advantage of regeneration which makes it different from the ICE based vehicles. In order to maximize the efficiency, a heuristic search based algorithm - Genetic Algorithm (GA) is used.
Journal Article

Both-Sides Welding Technology for Resin Fuel Tubes

2016-04-05
2016-01-0506
This study developed technology for simultaneously welding heterogeneous resin tubes in order to weld and integrate resin tubes with two different specifications (low temperature and high temperature). The aim of integration was cost and weight reduction. The cost reduction due to reducing the number of parts exceeded the increase in material cost due to a change to resin materials. Base material fracture of the resin tubes was set as the breaking format condition, and the welding parameters of the joint part rotations and the friction time between the joint part and the resin tubes were specified as the weld strength judgment standard. In addition, the fused thickness determined by observing the cross-section after welding was specified as the weld quality judgment standard. The range over which weld boundary peeling does not occur and weld strength is manifest was clarified by controlling the welding parameters and the fused thickness.
Technical Paper

Shearographic Nondestructive Testing for High-Pressure Composite Tubes

2018-04-03
2018-01-1219
In response to the need for lightweight design in industries, composite materials are increasingly used to replace traditional metal tubes. However, subsurface defects such as voids, delaminations, and microcracks are still remaining common issues in composite pressure tubes. This paper introduces an application of Digital Shearography method in the Non-Destructive Testing (NDT) of high-pressure composite tubes. A new prototype high-pressure composite tube with a working pressure of 1000 psi range is tested using the digital Shearography method. To detect the sub-surface defects, a reference Shearographic phase map is created at 0 psi state, after that the composite tube is pressured using an oil pump, then the second Shearographic phase map is created at the pressured state. By subtracting the two shearographic phase maps created in different pressure state, the sub-surface defects can be identified clearly. The Shearographic NDT result is then compared with CT scan result.
Journal Article

Developing Safety Standards for FCVs and Hydrogen Vehicles

2009-04-20
2009-01-0011
The SAE Fuel Cell Vehicle (FCV) Safety Working Group has been addressing FCV safety for over 9 years. The initial document, SAE J2578, was published in 2002. SAE J2578 has been valuable as a Recommended Practice for FCV development with regard to the identification of hazards and the definition of countermeasures to mitigate these hazards such that FCVs can be operated in the same manner as conventional gasoline internal combustion engine (ICE)-powered vehicles. SAE J2578 is currently being revised so that it will continue to be relevant as FCV development moves forward. For example, test methods were refined to verify the acceptability of hydrogen discharges when parking in residential garages and commercial structures and after crash tests prescribed by government regulation, and electrical requirements were updated to reflect the complexities of modern electrical circuits which interconnect both AC and DC circuits to improve efficiency and reduce cost.
Journal Article

Narrow-Band Omnidirectional Structural Color

2008-04-14
2008-01-1049
Automotive pigments consist of absorptive materials which absorb most of the wavelengths of light in the visible range (400-800 nm) except one particular range which gets reflected and seen as color. This coloring mechanism based on light absorption due to their molecular structure generally reflects a broader range of wavelength with a moderate reflectivity (50-60%). However in nature we find many magnificent colors in insects, butterflies, birds and fishes. These colors in nature are not based on the abortive pigments, but on the nanoscopic regular structures that interfere light reflected from those periodic sites. Since animals contain no solid metals, to produce metallic-like reflections they also rely on interference of light.[1] Most common and well-known form of animal reflector is the multilayer type where alternating high and low refractive index layers are formed. Such nanostructure assembly can reflect light up to 100%.
Journal Article

Developing Safety Standards for FCVs and Hydrogen Vehicles

2008-04-14
2008-01-0725
The SAE FCV Safety Working Group has been addressing fuel cell vehicle (FCV) safety for over 8 years. The initial document, SAE J2578, was published in 2002. SAE J2578 has been valuable to FCV development with regard to the identification of hazards and the definition of countermeasures to mitigate these hazards such that FCVs can be operated in the same manner as conventional gasoline internal combustion engine (ICE)-powered vehicles. J2578 is currently being updated to clarify and update requirements so that it will continue to be relevant and useful in the future. An update to SAE J1766 for post-crash electrical safety was also published to reflect unique aspects of FCVs and to harmonize electrical requirements with international standards. In addition to revising SAE J2578 and J1766, the Working Group is also developing a new Technical Information Report (TIR) for vehicular hydrogen systems (SAE J2579).
Technical Paper

Fuel Vaporizer Catalyst Enables Compact Aftertreatment System Packaging by Reducing Mixing Length

2010-04-12
2010-01-1070
Stringent space constraints for on and off highway vehicles require compact exhaust aftertreatment system packaging to meet both EPA 2010 and final Tier 4 emission regulations. Development and validation of a compact diesel fuel vaporization and mixing system is the focus of this work. The fuel vaporization and mixing system is comprised of a fuel dosing system, catalytic monolith and mechanical mixer. A fuel reformer, lean NOx trap (LNT), diesel particulate filter (DPF) and a selective catalytic reduction (SCR) catalysts are positioned downstream of the fuel vaporizer system. A 44% reduction in total fuel vaporization / mixing path length was achieved using an optimized injection chamber, catalytic monolith and mixing element. Reformer outlet temperature results confirm that reformer inlet fuel vapor uniformity targets meet design specifications. Similarly, the fuel reformer efficiency using the fuel vaporizer met the design targets within the compact packaging envelope.
Technical Paper

Developing Safety Standards for FCVs and Hydrogen Vehicles

2010-04-12
2010-01-0131
The SAE Fuel Cell Vehicle (FCV) Safety Working Group has been addressing FCV safety for over 10 years. The initial document, SAE J2578, was published in 2002. SAE J2578 has been valuable as a Recommended Practice for FCV development with regard to the identification of hazards associated with the integration of hydrogen and electrical systems onto the vehicle and the definition of countermeasures to mitigate these hazards such that FCVs can be operated in the same manner as conventional gasoline internal combustion engine (ICE)-powered vehicles. An update to SAE J1766 for post-crash electrical safety was also published in 2008 to reflect unique aspects of FCVs and to harmonize electrical requirements with international standards. In addition to SAE J2578 and J1766, the SAE FCV Safety Working Group also developed a Technical Information Report (TIR) for vehicular hydrogen systems (SAE J2579).
Technical Paper

The New 1.0l Supercharger Zetec RoCam Engine

2002-11-19
2002-01-3438
The current Brazilian tax legislation promotes vehicles, powered by engines with up to 1.0l displacement. In order to offer the customer an engine with the maximum tax advantage, a supercharged derivative of the Ford 1.0l Zetec RoCam engine was developed. The market specific boundary conditions in South America require powertrains with immediate response especially at low engine speeds. This can be achieved by a supercharged engine concept. The paper discusses the required engine modifications for the supercharger application. The combustion system was changed to benefit from the higher volumetric efficiency, including the optimisation of the intake, exhaust and bypass control system. Extensive modifications of the base engine were required to adapt the engine to the higher thermal load and the specific boundary condition of a supercharger application.
Technical Paper

Elastomer Characterization for Digital Prototyping and Its Validation through Physical Testing

2017-01-10
2017-26-0181
There is an increased use of elastomers in the automotive industry for sealing, noise isolation, load dampening, insulation, etc., because of their key properties of elasticity and resilience. Elastomers are used in supercharger application for dampening the torsional fluctuation from the engine, to reduce noise issues. Finite element modeling of elastomers is challenging because of its non-linear behavior in different loading directions. It also undergoes very large elemental deformation (~up to 200%), which results in additional complexities in getting numerical convergence. Finally, it also exhibits viscous and elastic behavior simultaneously (viscoelastic effect) and it undergoes softening with progressive cyclic loading (Mullins effect). The present study deals with the characterization of elastomers for its modeling in commercial finite element software packages and verification of some predicted design parameters with physical testing.
Technical Paper

The Method to Predict the Vibration Transfer Function of Hydraulic Engine Mount on a Vehicle

2016-04-05
2016-01-1321
The CAE method to predict the vibration transfer function of the hydraulic engine mount on a vehicle with sufficient precision and calculation time without prototype cars was developed. The transfer function is given in the following steps. First, rubber deformation form under the power train weight loaded must be predicted. It’s obtained by using a reduction model of an engine mount, as a unit, which doesn’t have its fluid sealed inside, with the technique to get the static spring characteristics in a non-linear relationship. Second, Young’s modulus and structural damping coefficient for the deformed rubber must be given. As for these characteristics, ignoring the relations between these values and strain, the constant values are used. This considerably reduces computation time and model size. Next, the reduction model and the fluid model have must be combined to express actual product. In this step, coupled analysis for fluid and structure is used.
Technical Paper

Development of Front-Wheel-Drive ELSD for Efficient Performance and Safety

2012-04-16
2012-01-0305
The open (standard) differential provides an important function in vehicle dynamics and handling by splitting the applied driveline torque and allowing each wheel or axle to spin at different speeds. This function is necessary to eliminate axle bind-up while negotiating turns. However, it inherently impedes optimal traction and mobility performance by allowing the available torque to be limited by the wheel or axle having the least amount of traction. Loss of traction could result in loss of driveline torque control and a resulting loss of vehicle control. This loss of control could be catastrophic in the case of higher speed maneuvers. The proposed electronically controlled hydraulic limited slip differential solution corrects this problem, seamless to the driver, while maintaining the fundamental open differential function. Furthermore, this system maintains efficient forward motion compared to other solutions that slow the vehicle down while expending valuable energy.
X