Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

A New Concept for Low Emission Diesel Combustion (2nd Rep. : Reduction of HC and CO Emission, and Improvement of Fuel Consumption by EGR and MTBE Blended Fuel)

1998-08-11
981933
A new concept for diesel combustion has been investigated by means of engine experiments and combustion observations in order to realize a simultaneous reduction of NOx and particulate emissions. The concept is based on pre-mixed compression ignition combustion combined with multiple injection. In this method, some part of fuel is injected at an early stage of the process to form a homogeneous lean pre-mixture, then the remaining fuel is injected at around the TDC in the same manner as a conventional diesel injection. The emissions, ROHR (rate of heat release), and combustion pictures of conventional combustion, pilot injection combustion, and this new combustion concept were compared and analyzed. Engine tests were carried out using a single cylinder research engine equipped with a common rail injection system.
Technical Paper

Development of a Pre-Alarm Diagnostic System for a Diesel Emission Analyzer

1989-02-01
890186
Gaseous emission measurements of a diesel engine including hydrocarbons (HC), carbon monoxide (CO), and oxide of nitrogen (NOx) are made in accordance with the procedures specified in the Federal Register. However, it is very difficult to maintain constantly the accuracy of these emission measurements due to failure of the emission analyzer. The authors have thus developed the Pre-Alarm Diagnostic System for a Diesel Emission Analyzer. Firstly, the authors have carried out analysis of all failure modes that are classified into initial failure, random failure and wearing-out failure, plus tolerance level for prediction of failures and method of predicting failures. Next, the authors have developed the Pre-Alarm Diagnostic System that is able to easily discover these failures before the exhaust emission test. In this system, 40 sensors, such as pressure, temperature, voltage etc, are laid in each pipe line of connection between exhaust emission sampling pump and analyzer.
Technical Paper

The Reduction of Diesel Engine Emissions by Using the Oxidation Catalysts of Japan Diesel 13 Mode Cycle

1999-03-01
1999-01-0471
To reduce emissions from diesel engines, the effects of oxidation catalysts on the emissions reductions were studied. The effectiveness of several oxidation catalysts on both the regulated and unregulated emissions was evaluated. The oxidation activity of the catalysts was varied by changing Pt loading. The regulated emissions include particulate (PM), hydrocarbon (HC), and carbon monoxide (CO), and the unregulated emissions include benzene, formaldehyde, acetaldehyde, and benzo[a]pyrene (B[a]P). An 8 litter, turbocharged and aftercooled diesel engine was operated under the Japan Diesel 13 (D13) mode cycle for the evaluations. As the first step, evaluations were conducted with a commercially available JIS #2 diesel fuel (0.046 wt% sulfur). All the regulated and unregulated emissions except PM were reduced as the Pt loading (i.e. oxidation activity) increased. However, PM emissions were increased by the generation of sulfate when the Pt loading exceeded 0.2 g/l.
Technical Paper

Emission Characteristics from After-Treatment System of Medium and Light Duty Engines

2014-04-01
2014-01-1501
1 To meet the Japan Post New-Long-Term (Japan 2009) emissions regulation introduced in 2009, The Hydrocarbon Selective Catalytic Reduction (HC-SCR) system for the NOx emission with a diesel fuel was chosen among various deNOx after-treatment systems (the Urea-SCR, the NOx storage-Reduction Catalyst and so on). The HC-SCR was adopted, in addition to combustion modification of diesel engine (mainly cooled EGR) as the New DPR system. The New DPR system for medium and light duty vehicles was developed as a world's first technology by Hino Motors. Advantages of the New DPR are compact to easy-to-install catalyst converter and no urea solution (DEF) injection (regardless urea infrastructure) as compared the Urea-SCR system.
X