Refine Your Search

Topic

Search Results

Journal Article

Dynamic Stiffness of Hydraulic Bushing with Multiple Internal Configurations

2013-05-13
2013-01-1924
Fluid filled bushings are commonly used in vehicle suspension and sub-frame systems due to their spectrally-varying and amplitude-dependent properties. Since the literature on this topic is sparse, a controlled laboratory prototype bushing is first designed, constructed, and instrumented. This device provides different internal combination of long and short flow passages and flow restriction elements. Experiments with sinusoidal displacement excitations are conducted on the prototype, and dynamic stiffness spectra along with fluid chamber pressure responses are measured. The frequency-dependent properties of several commonly seen hydraulic bushing designs are experimentally studied and compared under two excitation amplitudes. Further, new linear time-invariant models with one long and one short flow passages (in parallel or series) are proposed along with the limiting cases.
Journal Article

Instabilities at the Low-Flow Range of a Turbocharger Compressor

2013-05-13
2013-01-1886
The acoustic and performance characteristics of an automotive centrifugal compressor are studied on a steady-flow turbocharger test bench, with the goal of advancing the current understanding of compression system instabilities at the low-flow range. Two different ducting configurations were utilized downstream of the compressor, one with a well-defined plenum (large volume) and the other with minimized (small) volume of compressed air. The present study measured time-resolved oscillations of in-duct and external pressure, along with rotational speed. An orifice flow meter was incorporated to obtain time-averaged mass flow rate. In addition, fast-response thermocouples captured temperature fluctuations in the compressor inlet and exit ducts along with a location near the inducer tips.
Technical Paper

Errors Associated with Transfer Path Analysis when Rotations are not Measured

2007-05-15
2007-01-2179
Previously we had found significant errors in the interfacial force results for a source-path-receiver system where only translational motions were measured. This paper examines the sources of those errors by using computational finite and boundary element models. The example case consists of a source structure (with few modes), a receiver (with many modes) and three steel rod paths. We first formulate indirect, yet exact, methods for estimating interfacial forces, by assuming that six-dimensional motions at any location are available though we focus on only the driving points. One- and three-dimensional sub-sets of the proposed formulation are compared with the six-dimensional theory in terms of interfacial force and partial sound pressure spectra.
Technical Paper

Effect of Intake Primary Runner Blockages on Combustion Characteristics and Emissions with Stoichiometric and EGR-diluted Mixtures in SI Engines

2007-10-29
2007-01-3992
In-cylinder charge motion is known to significantly increase turbulence intensity, accelerate combustion rate, and reduce cyclic variation. This, in turn, extends the tolerance to exhaust gas recirculation (EGR), while the introduction of EGR results in much lowered nitrogen oxide (NOx) emissions and reduced fuel consumption. The present study investigates the effect of charge motion in a spark ignition engine on fuel consumption, combustion, and engine-out emissions with stoichiometric and EGR-diluted mixtures under part-load operating conditions. Experiments have been performed with a Chrysler 2.4L 4-valve I4 engine under 2.41 bar brake mean effective pressure at 1600 rpm over a spark range around maximum brake torque timing. The primary intake runners are partially blocked to create different levels of tumble, swirl, and cross-tumble (swumble) motion in the cylinder before ignition.
Technical Paper

Miniaturized Sensor Systems for Early Fire Detection in Spacecraft

2009-07-12
2009-01-2469
A fire in spacecraft or habitat supporting NASA's Exploration mission could jeopardize the system, mission, and/or crew. Given adequate measures for fire prevention, the hazard from a fire can be significantly reduced if fire detection is rapid and occurs in the early stages of fire development. The simultaneous detection of both particulate and gaseous products has been proven to rapidly detect fires and accurately distinguish between real fires and nuisance sources. This paper describes the development status of gaseous and particulate sensor elements, integrated sensor systems, and system testing. It is concluded that while development is still necessary, the fundamental approach of smart, miniaturized, multisensor technology has the potential to significantly improve the safety of NASA space exploration systems.
Technical Paper

Autoignition Characteristics of Primary Reference Fuels and their Mixtures

2009-11-02
2009-01-2624
This study investigates the autoignition of Primary Reference Fuels (PRFs) using a detailed kinetic model. The chemical kinetics software CHEMKIN is used to facilitate solutions in a constant volume reactor and a variable volume reactor, with the latter representing an IC engine. Experimental shock tube and HCCI engine data from literature is compared with the present predictions in these two reactors. The model is then used to conduct a parametric study in the constant volume reactor of the effect of inlet pressure, inlet temperature, octane number, fuel/air equivalence ratio, and exhaust gas recirculation (EGR) on the autoignition of PRF/air mixtures. A number of interesting characteristics are demonstrated in the parametric study. In particular, it is observed that PRFs can exhibit single or two stage ignition depending on the inlet temperature. The total ignition delay, whether single or two stage, is correlated withn-C7H16/O2 ratio.
Technical Paper

The Application of Piezoceramic Actuation to Direct Fuel Injection

2003-09-16
2003-32-0001
With increasing demands to reduce emissions from internal combustion engines, engine manufacturers are forced to seek out new technology. One such technology employed primarily in the diesel and two-stroke engine community is direct-injection (DI). Direct injection has shown promising results in reduction of CO and NOx for both two- and four-stroke engines. While having been used for several years in the diesel industry, direct injection has been scrutinized for an inability to meet future requirements to reduce particulate matter emissions. Direct injection has also came under fire for complicating fuel delivery systems, thus making it cost prohibitive for small utility engine manufacturers. Recent research shows that the application of piezo-driven actuators has a positive effect on soot formation reduction for diesel engines and as this paper will distinguish, has the ability to simplify direct injection fuel delivery systems in general.
Technical Paper

The 2002 Ohio State University FutureTruck - The BuckHybrid002

2003-03-03
2003-01-1269
This year, in the third year of FutureTruck competition, the Ohio State University team has taken the challenge to convert a 2002 Ford Explorer into a more fuel efficient and environmentally friendly SUV. This goal was achieved by use of a post-transmission, charge sustaining, parallel hybrid diesel-electric drivetrain. The main power source is a 2.5-liter, 103 kW advanced CIDI engine manufactured by VM Motori. A 55 kW Ecostar AC induction electric motor provides the supplemental power. The powertrain is managed by a state of the art supervisory control system which optimizes powertrain characteristics using advanced energy management and emission control algorithms. A unique driver interface implementing advanced telematics, and an interior designed specifically to reduce weight and be more environmentally friendly add to the utility of the vehicle as well as the consumer appeal.
Technical Paper

Approximating Engine Tailpipe Orifice Noise Sound Quality using a Surge Tank and In-Duct Measurements

2003-05-05
2003-01-1641
Because of the need to safely vent exhaust gases, most engine dynamometer facilities are not well suited to measuring engine exhaust orifice noise. Depending on the location of the dyno facility within the building, the exhaust system may need to be extended in order to properly vent the exhaust fumes. This additional ducting changes the acoustic modes of the exhaust system which will change the measured orifice noise. Duct additions downstream of the original orifice location also alter the termination impedance such that in-duct pressure measurements with and without the extended exhaust system can vary significantly. In order to minimize the effect of the building's exhaust system on the desired engine exhaust system measurements, the present approach terminates the engine exhaust into a large enclosed volume or surge tank before venting the gases into the building's ventilation system.
Technical Paper

Structure-Borne Noise Measures and Their Correlation to Sound Radiation over a Broad Range of Frequencies

2003-05-05
2003-01-1450
Structure-borne noise within vehicle structures is often transmitted in a multi-dimensional manner and thus the vibro-acoustic model(s) of automotive powertrain or chassis must incorporate longitudinal and transverse (flexural) motions as well as their couplings. In this article, we employ the continuous system theory to model a typical vibration isolator (say the engine mounting system) and a compliant receiver that could simulate the body structure. The powertrain source is however assumed to be rigid, and both harmonic force and moment excitations are considered. Our analysis is limited to a linear time-invariant system, and the frequency domain based mobility method is utilized to synthesize the overall system. Contributions of both in-plane and flexural motions to structure-borne and radiated noise are incorporated. Two examples are considered to illustrate the methodology.
Technical Paper

Fabrication of a Parallel-Series PHEV for the EcoCAR 2 Competition

2013-10-14
2013-01-2491
The EcoCAR 2: Plugging into the Future team at the Ohio State University is designing a Parallel-Series Plug-in Hybrid Electric Vehicle capable of 50 miles of all-electric range. The vehicle features a 18.9-kWh lithium-ion battery pack with range extending operation in both series and parallel modes. This is made possible by a 1.8-L ethanol (E85) engine and 6-speed automated manual transmission. This vehicle is designed to drastically reduce fuel consumption, with a utility factor weighted fuel economy of 51 miles per gallon gasoline equivalent (mpgge), while meeting Tier II Bin 5 emissions standards. This report details the fabrication and control implementation process followed by the Ohio State team during Year 2 of the competition. The fabrication process includes finalizing designs based on identified requirements, building and assembling components, and performing extensive validation testing on the mechanical, electrical and control systems.
Technical Paper

A Fuzzy Decision-Making System for Automotive Application

1998-02-23
980519
Fault diagnosis for automotive systems is driven by government regulations, vehicle repairability, and customer satisfaction. Several methods have been developed to detect and isolate faults in automotive systems, subsystems and components with special emphasis on those faults that affect the exhaust gas emission levels. Limit checks, model-based, and knowledge-based methods are applied for diagnosing malfunctions in emission control systems. Incipient and partial faults may be hard to detect when using a detection scheme that implements any of the previously mentioned methods individually; the integration of model-based and knowledge-based diagnostic methods may provide a more robust approach. In the present paper, use is made of fuzzy residual evaluation and of a fuzzy expert system to improve the performance of a fault detection method based on a mathematical model of the engine.
Technical Paper

An Experimental Study on the Effect of Intake Primary Runner Blockages on Combustion and Emissions in SI Engines under Part-Load Conditions

2004-10-25
2004-01-2973
Charge motion is known to accelerate and stabilize combustion through its influence on turbulence intensity and flame propagation. The present work investigates the effect of charge motion generated by intake runner blockages on combustion characteristics and emissions under part-load conditions in SI engines. Firing experiments have been conducted on a DaimlerChrysler (DC) 2.4L 4-valve I4 engine, with spark range extending around the Maximum Brake Torque (MBT) timing. Three blockages with 20% open area are compared to the fully open baseline case under two operating conditions: 2.41 bar brake mean effective pressure (bmep) at 1600 rpm, and 0.78 bar bmep at 1200 rpm. The blocked areas are shaped to create different levels of swirl, tumble, and cross-tumble. Crank-angle resolved pressures have been acquired, including cylinders 1 and 4, intake runners 1 and 4 upstream and downstream of the blockage, and exhaust runners 1 and 4.
Technical Paper

IN-FLIGHT MEASUREMENTS OF THE GA(W)-2 AERODYNAMIC CHARACTERISTICS

1977-02-01
770461
Flight tests of a new 13% General Aviation Airfoil - the GA(W)-2 - gloved full span onto the existing wing of a Beech Sundowner have generated chordwise pressure distributions and wake surveys. Section lift, drag and moment coefficients derived from these measurements verify wind tunnel data and theory predicting the performance of this airfoil. The effect of steps, rivets and surface coatings upon the drag of the GA(W)-2 was also evaluated.
Journal Article

Effect of the Tooth Surface Waviness on the Dynamics and Structure-Borne Noise of a Spur Gear Pair

2013-05-13
2013-01-1877
This article studies the effects of tooth surface waviness and sliding friction on the dynamics and radiated structure-borne noise of a spur gear pair. This study is conducted using an improved gear dynamics model while taking into account the sliding frictional contact between meshing teeth. An analytical six-degree-of-freedom (6DOF) linear time varying (LTV) model is developed to predict system responses and bearing forces. The time varying mesh stiffness is calculated using a gear contact mechanics code. A Coulomb friction model is used to calculate the sliding frictional forces. Experimental measurements of partial pressure to acceleration transfer functions are used to calculate the radiated structure-borne noise level. The roles of various time-varying parameters on gear dynamics are analyzed (for a specific example case), and the predictions from the analytical model are compared with prior literature.
Technical Paper

Study of the Flow Field Development During the Intake Stroke in an IC Engine Using 2–D PIV and 3–D PTV

1999-03-01
1999-01-0957
The evolution of the flow field inside an IC engine during the intake stroke was studied using 2 different experimental techniques, namely the 2–D Particle Image Velocimetry (2–D PIV) and 3–D Particle Tracking Velocimetry (3–D PTV) techniques. Both studies were conducted using a water analog engine simulation rig. The head tested was a typical pent–roof head geometry with two intake valves and one exhaust valve, and the simulated engine operating point corresponded to an idle condition. For both the 2–D PIV and 3–D PTV experiments, high–speed CCD cameras were used to record the motion of the flow tracer particles. The camera frame rate was adjusted to correspond to 1/4° of crank angle (CA), hence ensuring excellent temporal resolution for velocity calculations. For the 2–D PIV experiment, the flow field was illuminated by an Argon–ion laser with laser–sheet forming optics and this laser sheet was introduced through a transparent piston crown to illuminate the center tumble plane.
Technical Paper

A Novel Approach to Real-Time Estimation of the Individual Cylinder Combustion Pressure for S.I. Engine Control

1999-03-01
1999-01-0209
Over the last decade, many methods have been proposed for estimating the in-cylinder combustion pressure or the torque from instantaneous crankshaft speed measurements. However, such approaches are typically computationally expensive. In this paper, an entirely different approach is presented to allow the real-time estimation of the in-cylinder pressures based on crankshaft speed measurements. The technical implementation of the method will be presented, as well as extensive results obtained for a V-6 S.I. engine while varying spark timing, engine speed, engine load and EGR. The method allows to estimate the in-cylinder pressure with an average estimation error of the order of 1 to 2% of the peak pressure. It is very general in its formulation, is statistically robust in the presence of noise, and computationally inexpensive.
Technical Paper

Two-Zone Heat Release Analysis of Combustion Data and Calibration of Heat Transfer Correlation in an I. C. Engine

1999-03-01
1999-01-0218
Typically, the combustion analysis for S.I. engines is limited to the determination of the apparent heat release from in-cylinder pressure measurements, effectively using a single zone approach with constant properties determined at some average temperature. In this paper, we follow an approach consistent with the engine modeling approach (i.e., reverse modeling) to extract heat release rate from combustion pressure data. The experimental data used here solely consists of quantities measured in a typical engine dynamometer tests, namely the crank-angle resolved cylinder pressure, as well as global measurements of the A/F ratio, engine speed, load, EGR, air mass flow rate and temperature and exhaust emissions. We then perform a two-zone, crank-angle resolved analysis of the pressure data using variable composition and properties.
Technical Paper

Refinement of a Parallel-Series PHEV for Year 3 of the EcoCAR 2 Competition

2014-10-13
2014-01-2908
The EcoCAR 2 team at the Ohio State University has designed an extended-range electric vehicle capable of 44 miles all-electric range, which features a 18.9-kWh lithium-ion battery pack with range extending operation in both series and parallel modes made possible by a 1.8-L ethanol (E85) engine and a 6-speed automated manual transmission. This vehicle is designed to reduce fuel consumption, with a utility factor weighted fuel economy of 50 miles per gallon gasoline equivalent (mpgge), while meeting Tier II Bin 5 emissions standards. This report documents the team's refinement work on the vehicle during Year 3 of the competition, including vehicle improvements, control strategy calibration and dynamic vehicle testing, culminating in a 99% buy off vehicle that meets the goals set forth by the team. This effort was made possible through support from the U.S. Department of Energy, General Motors, The Ohio State University, and numerous competition and local sponsors.
Technical Paper

Environmental Traffic Modeling and Simulation SIL Toolset for Electrified Vehicles

2021-04-06
2021-01-0176
With the enhancements in vehicle electrification and autonomous vehicles, Traffic systems are also being improved at an accelerated rate to aid the development of improving fuel economy standards. For this to be possible, it is essential that traffic can be accurately modeled and predicted. The existing toolsets are proprietary and expensive and traffic modeling is not a trivial task due to its dependence on various factors such as place, time, and weather. To address these issues, an entirely open-source Software-In-Loop (SIL) fleet-focused traffic modeling toolset has been developed with the ability to take environmental factors with powertrain-in-the-loop into account leveraging Simulation of Urban Mobility (SUMO) and python. The proposed SIL toolset encompasses the creation of a microscopic traffic distribution which accounts for the usual traffic trends of a typical day.
X