Refine Your Search

Topic

Search Results

Journal Article

Influence of Feature Lines of Vehicle Hood Styling on Headform Kinematics and Injury Evaluation in Car-to-Pedestrian Impact Simulations

2014-04-01
2014-01-0518
Vehicle hood styling has significant influence on headform kinematics in assessment tests of pedestrian impact protection performance. Pedestrian headform kinematics on vehicle front-end models with different hood styling characteristics is analyzed based on finite element modeling. More elevated feature lines near hood boundary and the following continuous hood surface towards fender will result in a different headform motion. It can lead to larger deformation space, more rotation and earlier rebound of the headform impactor, which will benefit the head impact protection performance. In addition, hood geometry characteristics such as hood angle and curvature have effects on structural stiffness. Therefore, inclusion of considerations on pedestrian head protection into the vehicle hood styling design stage may lead to a more effective and efficient engineering design process on headform impact analysis.
Journal Article

A Robust Lane-Keeping ‘Co-Pilot’ System Using LBMPC Method

2015-04-14
2015-01-0322
To provide a feasible transitional solution from all-by-human driving style to fully autonomous driving style, this paper proposed concept and its control algorithm of a robust lane-keeping ‘co-pilot’ system. In this a semi-autonomous system, Learning based Model Predictive Control (LBMPC) theory is employed to improve system's performance in target state tracking accuracy and controller's robustness. Firstly, an approximate LTI model which describes driver-vehicle-road closed-loop system is set up and real system's deviations from the LTI system resulted by uncertainties in the model are regarded as bounded disturbance. The LTI model and bounded disturbances make up a nominal model. Secondly, a time-varying model which is composed of LTI model and an ‘oracle’ component is designed to observe the possible disturbances numerically and it is online updated using Extended Kalman Filter (EKF).
Journal Article

Experimental Investigation of Different Blends of Diesel and Gasoline (Dieseline) in a CI Engine

2014-10-13
2014-01-2686
Combustion behaviour and emissions characteristics of different blending ratios of diesel and gasoline fuels (Dieseline) were investigated in a light-duty 4-cylinder compression-ignition (CI) engine operating on partially premixed compression ignition (PPCI) mode. Experiments show that increasing volatility and reducing cetane number of fuels can help promote PPCI and consequently reduce particulate matter (PM) emissions while oxides of nitrogen (NOx) emissions reduction depends on the engine load. Three different blends, 0% (G0), 20% (G20) and 50% (G50) of gasoline mixed with diesel by volume, were studied and results were compared to the diesel-baseline with the same combustion phasing for all experiments. Engine speed was fixed at 1800rpm, while the engine load was varied from 1.38 to 7.85 bar BMEP with the exhaust gas recirculation (EGR) application.
Journal Article

Closed Loop Control Algorithm of Fuel Cell Output Power for a City Bus

2013-04-08
2013-01-0479
This paper studies a control algorithm for fuel cell/battery city buses. The output power of the fuel cell is controlled by a D.C. converter, and the output ports of the converter and the battery are connected in parallel to supply power for the electric motor. One way to prolong service life is to have the fuel cell system to deliver a steady-state power. However, because of fluctuations in the bus voltage and uncertainness in the D.C. converter, the output power of the fuel cell system changes drastically. A closed-loop control algorithm is necessary to eliminate the errors between the output and target power of the fuel cell system. The algorithm is composed of two parts, the feed forward one and the feedback one. Influences of the bus voltage and D.C. efficiency are compensated automatically in the feedback algorithm by using a PI algorithm. The stability and robustness of the algorithm is analyzed.
Technical Paper

Economic, Environmental and Energy Life-Cycle Assessment of Coal Conversion to Automotive Fuels in China

1998-11-30
982207
A life-cycle assessment (LCA) has been developed to help compare the economic, environmental and energy (EEE) impacts of converting coal to automotive fuels in China. This model was used to evaluate the total economic cost to the customer, the effect on the local and global environments, and the energy efficiencies for each fuel option. It provides a total accounting for each step in the life cycle process including the mining and transportation of coal, the conversion of coal to fuel, fuel distribution, all materials and manufacturing processes used to produce a vehicle, and vehicle operation over the life of the vehicle. The seven fuel scenarios evaluated in this study include methanol from coal, byproduct methanol from coal, methanol from methane, methanol from coke oven gas, gasoline from coal, electricity from coal, and petroleum to gasoline and diesel. The LCA results for all fuels were compared to gasoline as a baseline case.
Technical Paper

Develop of active suspension and experimental study of control strategy based on output feedback and frequency shaping

2000-06-12
2000-05-0179
In this paper, a 2-DOF experimental equipment of active suspension is developed. This system is hydro-pneumatic type and is controlled through oil flow. A control strategy based on output feedback and frequency shaping is proposed and realized on this model. Output feedback can reduce the number of system states that should be measured and thus simplify the complexity and improve the reliability of the system. Because of the different human sensitivity to different frequency ranges of vibration, it is necessary to pay effort on the suppression of vibration according to human sensitivity. Frequency shaping technology is thus applied on performance index to improve the ride quality. Several types of measurement versions are investigated and optimized. Simulation results indicate that using sprung mass velocity and suspension deflection, the system performance can approach the full-state feedback system performance.
Technical Paper

Experimental and theoretical study on the swirl exhaust system for diesel engines

2000-06-12
2000-05-0162
On the basis of modular pulse converter (MPC) exhaust system the authors present a new swirl exhaust system. Structural parameters on the swirl exhaust system and MPC system for N8160ZC diesel engine were calculated by a mathematical optimum method, and the two systems were tested under the same engine operation for comparison. Experimental results show that the swirl exhaust system has a better engine performance under most of the operating conditions than MPC system, but worse under the low-speed and part-load conditions. In order to understand the mechanism of this swirl exhaust system well, a three-dimensional particle dynamic analyzer (3D-PDA) was utilized to measure the steady turbulent airflow in a swirl three-branched model. The computational fluid dynamics (CFD) code KIVA was modified to simulate the flows. Computational results are in good agreement with measuring ones and reveal the swirl flow behavior in the junction.
Technical Paper

Knocking Suppression using Stratified Stoichiometric Mixture in a DISI Engine

2010-04-12
2010-01-0597
Knocking is the main obstacle of increasing compression ratio to improve the thermal efficiency of gasoline engines. In this paper, the concept of stratified stoichiometric mixture (SSM) was proposed to suppress knocking in gasoline engines. The rich mixture near the spark plug increases the speed of the flame propagation and the lean mixture in the end gas suppresses the auto ignition. The overall air/fuel ratio keeps stoichiometric to solve the emission problem using three way catalysts (TWC). Moreover, both the rich zone and lean zone lead to soot free combustion due to homogeneous mixture. The effect on the knocking of homogeneous and stratified mixture was studied in a direct injection spark ignition (DISI) engine using numerical simulation and experimental investigation respectively.
Technical Paper

Lean Oxygen Gum Simulation Test for Gasoline Detergency and its Correlation with M111 Engine Test

2010-10-25
2010-01-2134
Gasoline detergency is related to deposits at various parts of the engine and therefore has impact on vehicle driveability and emission properties. The widely used engine tests such as CEC F-20 M111 and ASTM D6201 Ford 2.3L tests take tens of hours and thus are very expensive and time consuming to carry out. A new simulation test for gasoline detergency on intake valve cleanliness using lean-oxygen gum method was developed and the correlation of test results with M111 engine test was studied. Gasoline samples with different detergency levels were tested with both the lean-oxygen gum method and the M111 engine test. Test results of 24 gasoline samples show satisfactory correlation between the lean-oxygen gum method and the M111 engine test (R₂=0.7258).
Technical Paper

CAD of engine dynamic test bed based on hybrid simulation

2000-06-12
2000-05-0348
The hybrid simulation method is adopted to develop engine dynamic test bed based on eddy-current dynamometer. The hybrid simulation scheme of engine dynamic test bed is designed. The principle is discussed. Finally, the CAD method is used to design main parameters of engine dynamic test bed based on simulation ECE15 and US LA4-CH Driving Schedules by Shanghai Santana 2000 car. The results are compared to the actual test results on the chassis dynamometer. The hybrid simulation method is proved to be an efficient way by simulation and comparison.
Technical Paper

Coordinated Control of EGR and VNT in Turbocharged Diesel Engine Based on Intake Air Mass Observer

2002-03-04
2002-01-1292
Coordinated EGR-VNT control based on the intake air mass observer is presented in this paper to deal with the transient AFR control of turbocharged diesel engine. The air mass model embedded in the observer is a Takagi-Sugeno fuzzy neural network trained with transient simulation results. It can predict the charged fresh air mass entering the cylinder. In a high load region, when EGR is not effective, the coordinated EGR-VNT control will also bring benefits to the transient air-fuel-ratio control. The simulation results of TDI engine model verify that the transient control strategy will allow a better control of the intake air mass, and thus improve air-fuel-ratio control and reduce NOx emission in transients.
Technical Paper

Optimization of an Electric Turbo Compounding System for Gasoline Engine Exhaust Energy Recovery

2011-04-12
2011-01-0377
A large proportion (about 33%) of the fuel energy is lost through exhaust gas in a gasoline engine. Electric turbo compounding (ETC) is a promising technology for gasoline engine exhaust energy recovery. In this paper, optimization of an ETC system for turbocharged gasoline engines is carried out. The ETC system has a turbo-generator that is in parallel with the turbocharger, the flow distribution between the turbocharger and the turbo-generator is controlled. The engine exhaust energy is recovered by the turbo-generator with fixed geometry turbine (FGT) or variable nozzle turbine (VNT). The design and control of the ETC system are optimized for best recovery of engine exhaust energy at engine full load and part load operating conditions. The system performance is studied by 1D simulation methods. The gasoline engine is modeled with the GT-POWER software and the turbochargers and turbo-generators are modeled with turbo through-flow models.
Technical Paper

Optimal Feedback Control with in-Cylinder Pressure Sensor under Engine Start Conditions

2011-04-12
2011-01-1422
In-cylinder pressure sensor, which provides the means for precise combustion control to achieve improved fuel economy, lower emissions, higher comfort, additional diagnostic functions etc., is becoming a necessity in future diesel engines, especially for chemical-kinetics dominated PCCI (Premixed Charge Compression Ignition) or LTC (Low Temperature Combustion) engines. In this paper, new control strategy is investigated to utilize in-cylinder pressure information into engine start process, in order to guarantee the success of engine start and in the meantime prevent penalty of fuel economy or pollutant emissions due to excessive fuel injection. An engine start acceleration model is established to analyze the engine start process. “In-cylinder Combustion Analysis Tool” (i-CAT), is used to acquire and process the in-cylinder pressure data and deliver the combustion indices to ECU (Engine Control Unit). Feedback control is accomplished in ECU based on this information.
Technical Paper

The Impact of Fuel Properties from Chinese Market on the Particulate and VOCs Emissions of a PFI and a DIG Engine

2016-04-05
2016-01-0838
An experimental study of particulate matter and volatile organic compounds (VOCs) emissions was conducted on a direct injection gasoline (DIG) engine and a port fuel injection (PFI) engine which both were produced by Chinese original equipment manufacturers (OEMs) to investigate the impact of fuel properties from Chinese market on particulate and VOCs emissions from modern gasoline vehicles. The study in this paper is just the first step of the work which is to investigate the impact of gasoline fuel properties and light duty vehicle technologies on the primary and secondary emissions, which are the sources of particulate matter 2.5 (PM2.5) in the atmosphere in China. It is expected through the whole work to provide some suggestions and guidelines on how to improve air quality and mediate severe haze pollution in China through fuel quality control and vehicle technology advances.
Technical Paper

Comparison Between Air-Assisted and Airless Urea Spray for Diesel SCR System by PDA and CFD

2012-04-16
2012-01-1081
The urea NOx selective catalytic reduction (SCR) is an effective technique for the reduction of NOx emitted from diesel engines. Urea spray quality has significant effect on NOx conversion efficiency. The droplet diameter and velocity distribution of air-assisted and airless urea injection systems were obtained by particle dynamics analyzer (PDA) measurement under different spray injection flow rates. It was found that the atomization quality of air-assisted urea injection system is better than that of airless urea injection system. The penetration and spray cone angle were also investigated by high-speed photography. Especially the spray characteristics of air-assisted urea injection system were measured in the constant-volume-bomb by high-speed photography. The atomization and evaporation of airless urea injection systems were modeled using computational fluid dynamics (CFD) based on the experimental results. The numerical model was validated by the experimental results.
Technical Paper

Design and Development of an Automotive Magneto-Rheological Brake System

2013-09-30
2013-01-2061
The paper presents a new electromechanical brake system for vehicles using magnetorheological fluid. The brake system designed for the electric vehicle has some advantages over the conventional brake system. The brake system is made up of a brake disk, shells, magnetorheological fluid (MRF) and the electromagnets. The brake disk is immersed in the MRF whose yield stress changes as the applied magnetic field. The braking torque of this system can be linearly adjusted by the current in just a few milliseconds without the conventional vacuum booster. This system has a quick response and precise control performance with a low hysteresis. Besides, the system has adopted the original complicated structure to save space and cost. In this paper, the configuration of MRF brake types is described. The braking torques of the MRF brakes is derived based on the MRF theoretical model which is firstly raised. Some braking simulation based on the theoretical model is also shown.
Technical Paper

Simultaneous Reductions in Diesel NOx and Smoke Emissions with Aqueous Metal-Salt Solutions Directly Injected into the Combustion Chamber

1996-05-01
961164
The effect of several aqueous metal-salt solutions on NOx and smoke lowering in an IDI diesel engine were examined. The solutions were directly injected into a divided chamber independent of the fuel injection. The results showed that significant lowering in NOx and smoke over a wide operation range could be achieved simultaneously with alkali metal solutions which were injected just prior to the fuel injection. With sodium-salt solutions, for instance, NOx decreased by more than 60 % and smoke decreased 50 % below conventional operation. The sodium-salt solution reduced dry soot significantly, while total particulate matter increased with increases in the water soluble fractions.
Journal Article

Optimization Based Trajectory Planning of Parallel Parking with Multiple Constraints

2015-04-14
2015-01-0320
The reference path played a very important role in the parking schemes. In this paper, an arc tangent liked polynomial trajectory model is proposed, and an optimal trajectory is obtained for automatic parallel parking based on genetic algorithm, which ensures that the vehicle does not collide with obstacles or other vehicles during parking. The proposed algorithm has strong robustness because of that all the parameters of the vehicle and the parallel parking spaces are parameterized. Using the trajectory model with the vehicle and parking space parameters, a cost function with multi-constraints, were established for path planning. The start and end points of the planning trajectory are the actual starting point and the desired final parking point of the vehicle by choosing three parameters of the trajectory model appropriately. Simulation results illustrate the effectiveness of the proposed algorithm.
Technical Paper

Operating Characteristics and Description of a Dual Fuel Engine for Diesel-Natural Gas Heavy-Duty Operation

1999-10-25
1999-01-3523
This paper presents a dual fuel system for diesel-natural gas operation for a truck diesel engine, and describes results of testing and analysis of the operating characteristics of the engine. The research results show that rates of fuel consumption and fuel efficiencies are increased with this engine design, and heat consumption decreased with increasing load on the engine. The heat consumption rates at medium-high loads are lower than at light loads. At full loads, the dual fuel engine exhibits heat release in which start combustion is reduced and the following combustion is rapid. The engine is tested with an electronically controlled method to meet the requirement of engine output torque.
Technical Paper

Role of Wall Effect on Hot-Spot Induced Deflagration to Detonation in Iso-Octane/Air Mixture Under High Temperature and Pressure

2016-04-05
2016-01-0552
A 1-Dimensional (1-D) model of fluid dynamic and chemistry kinetics following hot spot auto-ignition has been developed to simulate the process from auto-ignition to pressure wave propagation. The role of wall effect on the physical-chemical interaction process is numerically studied. A pressure wave is generated after hot spot auto-ignition and gradually damped as it propagates. The reflection of the wall forms a reflected pressure wave with twice the amplitude of the incident wave near the wall. The superposition of the reflected and forward pressure waves reinforces the intensity of the initial pressure wave. Wall effect is determined by the distance between the hot spot center and the cylinder wall. Hot spot auto-ignition near the wall easily initiates detonation under high-temperature and high-pressure conditions because pressure wave reflection couples with chemical reactions and propagates in the mixture with high reactivity.
X