Refine Your Search

Search Results

Viewing 1 to 10 of 10
Journal Article

Experimental Investigation of Droplet Dynamics and Spray Atomization inside Thermostatic Expansion Valves

2011-04-12
2011-01-0129
In this paper, experimental investigation on spray atomization and droplet dynamics inside a thermostatic expansion valve (TXV), a component commonly used in vehicle refrigeration system, was conducted. A needle and an orifice were copied from a commercial TXV and machined to be mounted inside a chamber with optical access so that the flow inside the TXV is simulated and visualized at the same time. The break-up and atomization of the refrigerant were documented near the downstream of the orifice under different feed conditions for two TXV with different geometry. A Phase Doppler Anemometry (PDA) system was used later to measure the size and velocity of atomized refrigerant droplets. The results showed that the droplet size variation along the radial direction is slightly decreased at near downstream and increased at farther downstream due to the coalescence.
Journal Article

The Effects of EGR and Injection Timing on the Engine Combustion and Emission Performances Fueled by Butanol-Diesel Blends

2012-04-01
2011-01-2473
The combustion and emission characteristics of a diesel engine running on butanol-diesel blends were investigated in this study. The blending ratio of n-butanol to diesel was varied from 0 to 40 vol% using an increment of 10 vol%, and each blend was tested on a 2.7 L V6 common rail direction injection diesel engine equipped with an EGR system. The test was carried out under two engine loads at a constant engine speed, using various combinations of EGR ratios and injection timings. Test results indicate that n-butanol addition to engine fuel is able to substantially decrease soot emission from raw exhaust gas, while the change in NOx emissions varies depending on the n-butanol content and engine operating conditions. Increasing EGR ratio and retarding injection timing are effective approaches to reduce NOx emissions from combustion of n-butanol-diesel blends.
Technical Paper

Development of a Gasoline Particulate Filter for China 6(b) Emission Standards

2017-09-04
2017-24-0135
New emissions regulations of light-duty vehicles (China 6) will be implemented in China from July 1, 2020. This standard includes two stages, China 6a and China 6(b), in which the PM limits of 4.5 mg/km and 3.0 mg/km are introduced respectively; the PN limit is set to be 6×1011 #/km for both stages. The WLTC testing cycle will be implemented in China 6 regulation as well. In this study a light-duty vehicle satisfying China 6(b) emission standards was developed by improving the engine raw emissions, optimizing the calibration and adding a coated GPF to the after-treatment system. The impacts of ash content and consumption of engine oil and the fast ash accumulation to vehicle emissions and backpressure were analyzed through dynamometer testing. The vehicle after-treatment system was then designed and developed to meet China 6(b) emission standards. The characteristics of soot accumulated through mimicking routine driving under cold environments were tested.
Technical Paper

A Study on Reducing Gear Rattle Noise Based on Sensitivity Analysis of Drivetrain Torsional Model

2017-06-05
2017-01-1779
With drastically reduction of engine noise, the gear rattle noise generated by the impact between neutral gears inside transmission can be much easily perceived. It is well known that the torsional mode has a direct relationship with the transmission gear rattle noise. This paper establishes a torsional model of a front wheel drive automotive drivetrain, including clutch system, transmission box and equivalent load of a full vehicle, in AMESim software. The experimental engine speed fluctuations at different gears are used to excite the torsional model. The influences of several parameters, including flywheel inertia, clutch stiffness, clutch hysteresis and drive shaft stiffness, on the 2nd order (major engine firing order for a 4-cylinder-4-stroke engine) torsional resonant frequency and the 2nd order torsional resonant peak of the transmission input shaft are analyzed by changing them alternatively.
Technical Paper

Study of Polycyclic Aromatic Hydrocarbons Evolution Processing in GDI Engines Using TRF-PAH Chemical Kinetic Mechanism

2016-04-05
2016-01-0690
In the present study, we developed a reduced TRF-PAH chemical reaction mechanism consisted of iso-octane, n-heptane and toluene as gasoline surrogate fuels for GDI (gasoline direct injection) spark ignition engine combustion simulation. The reduced mechanism consists of 85 species and 232 reactions including 17 species and 40 reactions related to the PAHs (polycyclic aromatic hydrocarbons) formation. The present mechanism was validated for extensive validations with experimental ignition delay times in shock tubes and laminar flame speeds in flat flame adiabatic burner for gasoline/air and TRF/air mixtures under various pressures, temperatures and equivalence ratios related to engine conditions. Good agreement was achieved for most of the measurement. Mole fraction profiles of PAHs for n-heptane flame were also simulated and the experimental trends were reproduced well. The vapor-phase and particulate-bound PAHs existed in GDI engine exhaust were sampled and analyzed by GC-MS.
Technical Paper

Reducing NOx Emissions from a Common-Rail Engine Fueled with Soybean Biodiesel

2011-04-12
2011-01-1195
Performance and emissions of a common-rail production diesel engine fueled with soybean-derived biodiesel was investigated. The work was broken down into two categories. First, adjustment of injection timing and EGR ratio was investigated as a means to reduce NOx emissions to levels comparable with those obtained when using pure diesel fuel. Next, simultaneous reduction of NOx and soot emissions was investigated using high rates of EGR combined with late injection timings to approach the low-temperature combustion regime. Results from the first part of the study indicate that optimization of engine control parameters for use with biodiesel can be beneficial to performance and emissions. It was found that adjusting the engine's MAF setpoint table to reflect the difference in stoichiometric air-fuel ratio between diesel and biodiesel brought NOx emissions to comparable or lower levels.
Technical Paper

A Study of Effects of Volatility on Butanol-Biodiesel-Diesel Spray and Combustion

2011-04-12
2011-01-1197
Ternary blends of butanol-biodiesel-diesel with different blending ratios were tested inside a constant volume chamber under various ambient temperatures so as to investigate the spray and combustion characteristics of the fuels. Applying the high speed imaging, a sudden drop in spray penetration was observed at ambient temperature of 800 K and 900 K for fuels with certain blending ratio, but not at 1000 K and 1200 K. When the spray penetration of the butanol-biodiesel-diesel blends was compared to that of the biodiesel-diesel blends under non-combusting environment, a sudden drop in spray penetration length was also observed at 1100 K. The results indicated that for the non-combusting case, the tip of the spray jet erupted into a plume sometime after injection for the butanol-biodiesel-diesel blend at an ambient temperature of 1100 K. Such phenomenon was not seen with the biodiesel-diesel blend, neither with the same fuel but at a lower ambient temperature of 900 K.
Technical Paper

Spray and Combustion Characteristics of n-Butanol in a Constant Volume Combustion Chamber at Different Oxygen Concentrations

2011-04-12
2011-01-1190
A very competitive alcohol for use in diesel engines is butanol. Butanol is of particular interest as a renewable bio-fuel, as it is less hydrophilic and it possesses higher heating value, higher cetane number, lower vapor pressure, and higher miscibility than ethanol or methanol. These properties make butanol preferable to ethanol or methanol for blending with conventional diesel or gasoline fuel. In this paper, the spray and combustion characteristics of pure n-butanol fuel was experimentally investigated in a constant volume combustion chamber. The ambient temperatures were set to 1000 K, and three different oxygen concentrations were set to 21%, 16%, and 10.5%. The results indicate that the penetration length reduces with the increase of ambient oxygen concentration. The combustion pressure and heat release rate demonstrate the auto-ignition delay becomes longer with decreasing of oxygen concentrations.
Technical Paper

Effect of Ash on Gasoline Particulate Filter Using an Accelerated Ash Loading Method

2018-04-03
2018-01-1258
Gasoline particulate filter (GPF) is considered a suitable solution to meet the increasingly stringent particle number (PN) regulations for both gasoline direct injection (GDI) and multi-port fuel injection (MPI) engines. Generally, GDI engines emit more particulate matter (PM) and PN. In recent years, GDI engines have gained significant market penetration in the automobile industry owing to better fuel economy and drivability. In this study, an accelerated ash loading method was tested by doping lubricating oil into the fuel for a GDI engine. Emission tests were performed at different ash loads with different driving cycles and GPF combinations. The results showed that the GPF could significantly reduce particle emissions to meet the China 6 regulation. With further ash loading, the filtration efficiency increased above 99% and the effects on fuel consumption and backpressure were found to be limited, even with an ash loading of up to 50 g/l.
Technical Paper

Study on the Bending Vibration of a Two-Piece Propeller Shaft for 4WD Driveline

2015-06-15
2015-01-2174
Currently, four wheel drive (4WD) system is widely used in Sports Utility Vehicle (SUV) due to the increasing demand of fuel efficiency and dynamic performance by customers. However, propeller shaft consisting of different universal joints and tubes on 4WD vehicle easily induces low frequency bending vibration. This paper analyzes the characteristics of driveline bending vibration of a 4WD vehicle and provides control methods to reduce the low frequency vibration caused by propeller shaft bending resonances. Firstly, the driveline bending vibration model of the 4WD vehicle is established using FEA method and the natural frequencies are calculated. Secondly, the influence parameters, such as universal joint, relative length of two-piece propeller shaft, and tube diameters, on bending frequencies are analyzed by both FEA analysis and physical testing.
X