Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Effects of Human Adaptation and Trust on Shared Control for Driver-Automation Cooperative Driving

2017-09-23
2017-01-1987
Vehicle automation is a fundamental approach to reduce traffic accidents and driver workload. However, there is a notable risk of pushing human drivers out of the control loop before automation technology fully matures. Cooperative driving (or vehicle co-piloting) is a novel paradigm which is defined as the vehicle being jointly navigated by a human driver and an automatic controller through shared control technology. Indirect shared control is an emerging shared control method, which is able to realize cooperative driving through input complementation instead of haptic guidance. In this paper we first establish an indirect shared control method, in which the driver’s commanded input and the controller’s desired input are balanced with a weighted summation. Thereafter, we propose a predictive model to capture driver adaptation and trust in indirect shared control.
Technical Paper

Emergency Steering Evasion Control by Combining the Yaw Moment with Steering Assistance

2018-04-03
2018-01-0818
The coordinated control of stability and steering systems in collision avoidance steering evasion has been widely studied in vehicle active safety area, but the studies are mainly aimed at autonomous vehicle without driver or conventional combustion engine vehicle. This paper focuses on the control of hybrid vehicle integrated with rear hub in emergency steering evasion situation, and considering the driver’s characteristics. First, the mathematics model of vehicle dynamics and driver has been given. Second, based on the planned steering evasion path, the model predictive control method is presented for achieving higher evasion path tracking accuracy under driver’s steering input. The prediction model includes an adaptive preview distance driver model and a vehicle dynamics model to predict the driver input and the vehicle trajectory.
Technical Paper

Estimation of Road-Tire Friction with Unscented Kalman Filter and MSE-Weighted Fusion based on a Modified Dugoff Tire Model

2015-04-14
2015-01-1601
This paper proposes an estimation method of road-tire friction coefficient for the 4WID EV(4-wheel-independent-drive electric vehicle) in the pure longitudinal wheel slip, lateral sideslip and combined slip situations, which fuses both estimated longitudinal and lateral friction coefficients together, compared with existing methods based on a tire model in one single direction. Unscented Kalman filter (UKF) is introduced to estimate one-directional friction coefficient based on a modified Dugoff tire model. Considering the output results for each direction as a signal for the same target with different noise, MSE-weighted fusion method is proposed to fuse these two results together in order to reach a higher accuracy. The tire forces are estimated with the benefits of the 4WID EV that the driving torque and rolling speed of each wheel can be accurately known. The sideslip angles and slip ratios of each tire are calculated with a vehicle kinematic model.
X