Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

Fuel Consumption and NOx Emission Prediction of Heavy-Duty Diesel Vehicles under Different Test Cycles and Their Sensitivities to Driving Factors

2020-09-15
2020-01-2002
Due to the rapid development of road infrastructure and vehicle population in China, the fuel consumption and emission of on-road vehicles tested in China World Transient Vehicle Cycle (C-WTVC) cannot indicate the real driving results. But the test results in China Heavy-duty Commercial Vehicle Test Cycle-Coach (CHTC-C) based on the road driving conditions in China are closer to the actual driving data. In this paper, the model for predicting the performance of heavy-duty vehicles is established and validated. The fuel consumption and NOx emission of a Euro VI heavy-duty coach under C-WTVC and CHTC-C tests are calculated by employing the developed model. Furthermore, the fuel consumption of the test coach is optimized and its sensitivity to the driving factors is analyzed.
Technical Paper

New Control Method of Four-Wheel Independent Driving Electric Vehicles for Anti-Slip Purpose

2020-04-14
2020-01-1420
The performance of electric vehicles could be enhanced by more flexible drivetrain configurations combined with advanced control methods. Based on four wheel independent driving and front and rear axle modular steering configuration, which was proposed by our research group last year, the problem of slippery under close-to-limit conditions are further discussed and simulated. A new torque vectoring method based on obtainable parameters and variables in real driving situations is introduced to reduce the sideslip when turning on low friction surfaces or with high speed. This method is developed from a comprehensive index, which reflects the stability and maneuverability, by adding additional torques when stability could not be compensated enough by basic torque vectoring. Besides, an improvement of adding a simu-Torsen differential mechanism is made to the model of the vehicle, which enables another control method with the same purpose as before.
Journal Article

A New Method for Bus Drivers' Economic Efficiency Assessment

2015-09-29
2015-01-2843
Transport vehicles consume a large amount of fuel with low efficiency, which is significantly affected by drivers' behaviors. An assessment system of eco-driving pattern for buses could identify the deficiencies of driver operation as well as assist transportation enterprises in driver management. This paper proposes an assessment method regarding drivers' economic efficiency, considering driving conditions. To this end, assessment indexes are extracted from driving economy theories and ranked according to their effect on fuel consumption, derived from a database of 135 buses using multiple regression. A layered structure of assessment indexes is developed with application of AHP, and the weight of each index is estimated. The driving pattern score could be calculated with these weights.
Journal Article

Mechanical Behavior of Lithium-Ion Battery Component Materials and Error Sources Analysis for Test Results

2016-04-05
2016-01-0400
As mechanical damage induced thermal runaway of lithium-ion batteries has become one of the research hotspots, it is quite crucial to understand the mechanical behavior of component materials of lithium battery. This study focuses on the mechanical performance of separators and electrodes under different loading conditions and the error sources analysis for test results. Uniaxial tensile tests were conducted under both quasi-static and dynamic loading conditions. The strain was acquired through the combination of high speed camera and digital image correlation (DIC) method while the force was obtained with a customized load cell. Noticeable anisotropy and strain rate effect were observed for separators. The fracture mode of separators is highly correlated to the microscopic fiber orientation. To demonstrate the correlation microscopic images of separator material were obtained through SEM to match the facture edges of tensile tests at different loading directions.
Journal Article

Characterization of Metal Foil in Anisotropic Fracture Behavior with Dynamic Tests

2018-04-03
2018-01-0108
Metal foil is a widely used material in the automobile industry, which not only is the honeycomb barrier material but is also used as current collectors in Li-ion batteries. Plenty of studies proved that the mechanical property of the metal foil is quite different from that of the metal sheet because of the size effect on microscopic scale, as the metal foil shows a larger fracture stress and a lower ductility than the metal sheet. Meanwhile, the fracture behavior and accurate constitutive model of the metal foil with the consideration of the strain rate effect are widely concerned in further studies of battery safety and the honeycomb. This article conducted experiments on 8011H18 aluminum foil, aiming to explore the quasi-static and dynamic tension testing method and the anisotropic mechanical behavior of the very thin foil. Two metal foil dog-bone specimens and three types of notched specimens were tested with a strain rate ranging from 2 × 10−4/s to 40/s and various stress states.
Technical Paper

Cooperative Ramp Merging Control for Connected and Automated Vehicles

2020-02-24
2020-01-5020
Traffic congestions are increasingly severe in urban areas, especially at the merging areas of the ramps and the arterial roads. Because of the complex conflict relationship of the vehicles in ramps and arterial roads in terms of time-spatial constraints, it is challenging to coordinate the motion of these vehicles, which may easily cause congestions at the merging areas. The connected and automated vehicles (CAVs) provides potential opportunities to solve this problem. A centralized merging control method for CAVs is proposed in this paper, which can organize the traffic movements in merging areas efficiently and safely. In this method, the merging control model is built to formulate the vehicle coordination problem in merging areas, which is then transformed to the discrete nonlinear optimization form. A simulation model is built to verify the proposed method.
Technical Paper

Effect of Oil Viscosity and Driving Mode on Oil Dilution and Transient Emissions Including Particle Number in Plug-In Hybrid Electric Vehicle

2020-04-14
2020-01-0362
Plug-in electric vehicle (PHEV) has a promising prospect to reduce greenhouse gas (GHG) emission and optimize engine operating in high-efficiency region. According to the maximum electric power and all-electric range, PHEVs are divided into two categories, including “all-electric PHEV” and “blended PHEV” and the latter provides a potential for more rational energy distribution because engine participates in vehicle driving during aggressive acceleration not just by motor. However, the frequent use of engine may result in severe emissions especially in low state of charge (SOC) and ahead of catalyst light-off. This study quantitatively investigates the impact of oil viscosity and driving mode (hybrid/conventional) on oil dilution and emissions including particle number (PN).
Technical Paper

The Review of Vehicle Purchase Restriction in China

2020-04-14
2020-01-0972
In the past two decades, rapidly expanding economy in China led to burst in travel demand and pursuit of quality of life. It further promoted the rapid growth of China's passenger car market. China had already become the largest vehicle sales country, exceeding the U.S. in 2010. By the end of 2018, there had been over 240 million cars in China, with over 200 million passenger cars. The surge of car ownership has also brought a series of problems, like traffic congestion, long commuting time, insufficient parking space, etc. Therefore, some local governments in China introduced vehicle purchase restriction policies to control the growth and gross of vehicle stock. Different cities issued different rules. Lottery and auction mechanisms both exist. There are also differences in classification and licensing of electric vehicles. However, with the recent slowdown of economic development, China's car sales began to decline in 2018, and the trend of 2019 is also not optimistic.
Journal Article

Energy Harvesting in Tire: State-of-the-Art and Challenges

2018-04-03
2018-01-1119
Although energy harvesting systems are extensively used in different fields, studies on the application of energy harvesters embedded in tires for vehicle control are rare and mostly focus on solving power supply problems of tire pressure sensors. Sensors are traditionally powered by an embedded battery, which must be replaced periodically because of its limited energy storage. Heightened interest in vehicle safety is expected to drive increased design and manufacture of in-tire sensors, which in turn, translates to rising demand for power generation in tires. These challenges emphasize the need to investigate the substitution of batteries and in-tire energy harvesting systems. Current in-tire energy harvesting methods involve piezoelectric, electromagnetic, and electrostatic power generation, whose energy sources include tire vibrations, deformations, and rotations. Piezoelectric harvesters are generally compact but operate for short durations.
Technical Paper

Potential Fuel Consumption Improvement Analysis for Integrated Starter Generator System Base on the New European Drive-cycle

2008-06-23
2008-01-1570
A conventional vehicle with gasoline engine was tested on a chassis dynamometer over the new European drive-cycle (NEDC). The distributions of the engine speed and power, the throttle positions during the drive cycle are analyzed. Engine idling, acceleration and deceleration take an important proportion in the drive cycle. If engine idling is instead by engine stop, the fuel consumption will be improved by 2.27%. In an Integrated Starter Generator (ISG) system, with the assist of the starter/generator, transient operation of the engine will decrease, which reduces fuel consumption by 6%. Fuel economy will be also improved by braking regeneration and restricting operating points to an optimized region, the details are not discussed in this paper. To reduce fuel consumption further, the region where engine usually runs in urban traffic, should be paid more attention to while engine calibration.
Technical Paper

Analysis of Causes of Rear-end Conflicts Using Naturalistic Driving Data Collected by Video Drive Recorders

2008-04-14
2008-01-0522
Studying traffic accidents by using naturalistic driving data has become increasingly appealing for its potential benefits in improving road safety. This paper presents findings from a field test which has been conducted on 50 taxis in the urban areas of Beijing for 10 months using Video Drive Recorders (VDRs). The VDR used in this study could record the information of vehicle front view video, vehicle states, as well as driver operations immediately before and after an event. The drivers were given no specific instructions during the test, and the instrumentation for data collection was unobtrusive. Important safety-relevant parameters, such as vehicle speed, pre-event maneuver, time headway, time-to-collision, and driver reaction time, were calculated with precision. Based on these parameters, an analysis into features and causes of rear-end conflicts is performed.
Technical Paper

Application of Narrow Cone Angle Injectors to Achieve Advanced Compression Ignition on a Mass-Production Diesel Engine - Control Strategy and Engine Performance Evaluation

2009-11-02
2009-01-2700
Advanced compression ignition combustion system which reduces simultaneously both nitride oxides (NOx) and particulate matter (PM) is a promising approach to meet future emission regulations. In order to achieve advanced compression ignition, flexible fuel injection is required for ultra-early and post-TDC injections, which conventional injector fails to accomplish due to wall-wetting effect. In this work, special injectors with the spray angle of 60 degree are applied on a 4 cylinder mass-production diesel engine without modification of the engine configuration. For application-oriented study, sweep experiments of injection timings and durations, fuel injection pressure and the boost pressure are carried out to investigate the relationships between the control parameters and the engine performance. Model based calibration and real application tests validate the maximum applicable operation range of maximum speed of 2200 RPM and IMEP of 8.0 bar.
Technical Paper

Development of a Virtual Fuel Cell Hybrid Vehicle Test Bed Based on Battery-in-the-Loop

2004-03-08
2004-01-0306
Battery is a vital part of a fuel cell hybrid vehicle, and also the most difficult part to model due to its nonlinearity. Therefore, This paper presents an integrated software-hardware solution to simulate the fuel cell vehicle power train more accurately based on battery-in-the-loop, with the aid of RT-LAB™. Moreover, the average modeling technique is used together with RT-LAB's distributed cluster technology to realize real-time simulation of the Field-Oriented Controlled induction motor drive, and the Boost DC/DC converter. As a result, a virtual test bed, which is very similar to actual power train, is set up. Finally, on this test bed some tests are performed to verify the existing battery model and soc estimation method, and to give more accurate fuel consumption results.
Technical Paper

A New Method to Accelerate Road Test Simulation on Multi-Axial Test Rig

2017-03-28
2017-01-0200
Road test simulation on test rig is widely used in the automobile industry to shorten the development circles. However, there is still room for further improving the time cost of current road simulation test. This paper described a new method considering both the damage error and the runtime of the test on a multi-axial test rig. First, the fatigue editing technique is applied to cut the small load in road data to reduce the runtime initially. The edited road load data could be reproduced on a multi-axial test rig successfully. Second, the rainflow matrices of strains on different proving ground roads are established and transformed into damage matrices based on the S-N curve and Miner rules using a reduction method. A standard simulation test for vehicle reliability procedure is established according to the proving ground schedule as a target to be accelerated.
Technical Paper

Mechanism of Neutral-Idle Shudder Phenomenon in an Automatic Transmission System

2016-04-05
2016-01-1128
Neutral-idle strategy has been applied for years to improve the fuel consumption of automatic transmission cars. The updated demand is the use of expanded slipping control strategy for further improvement of the transmission efficiency and response speed. However, one major drawback of the continuous slipping clutches is the high tendency to produce shudder or low frequency variation. In this research, a special neutral-idle shudder phenomenon is presented. This special shudder is not only related to slipping clutches but also related to the vibration and structure of the powertrain system. Simulations and experiments are conducted to give an insight view of this phenomenon. The analysis reveals that this special shudder is caused by both torsional vibration of the driveline and rigid-body vibration of the powertrain system. A positive feedback loop between those two kinds of vibrations leads to this special neutral-idle shudder.
Technical Paper

Effect of Fuel Detergent on Injector Deposit Formation and Engine Emissions in a Gasoline Direct Injection (GDI) Engine

2017-10-08
2017-01-2247
Gasoline direct injection (GDI) engines have been developed rapidly in recent years, driven by stringent legislative requirements on vehicle fuel efficiency and emissions. However, one challenge facing GDI is the formation of particulate emissions, particularly with the presence of injector tip deposits. The Chinese market features some gasoline fuels that contain no detergent additives and are prone to deposit formation, which can affect engine performance and emissions. The use of detergent additives to mitigate the formation of injector deposits in a GDI engine was investigated in this study by testing a 1.5L turbocharged GDI engine available in the Chinese market. The engine was operated both on base gasoline and on gasoline dosed with detergent additives to evaluate the effect on injector deposit formation and engine performance and emissions.
Technical Paper

Fuel Consumption Analysis and Optimizing of a Heavy Duty Dual Motor Coaxial Series-Parallel Hybrid Lorry under C-WTVC

2017-10-08
2017-01-2359
Energy saving is becoming one of the most important issues for the next generation of commercial vehicles. The fuel consumption limits for commercial vehicles in China have stepped into the third stage, which is a great challenge for heavy duty commercial vehicles. Hybrid technology provides a promising method to solve this problem, of which the dual motor coaxial series parallel configuration is one of the best options. Compared with parallel configuration, the powertrain can not only operate in pure electric or parallel mode, but also can operate in series mode, which shows better flexibility. In this paper, regulations on test cycle, fuel consumption limits and calculation method of the third stage will be introduced in detail. Then, the quasi-static models of the coaxial series parallel powertrain with/without gearbox under C-WTVC (China worldwide transient vehicle cycle) are built. The control strategies are designed based on engine and motor performance.
Technical Paper

Energy Management and Design Optimization for a Power-Split, Heavy-Duty Truck

2017-10-08
2017-01-2450
Power-split configuration is highlighted as the most popular concept for full hybrid electric vehicles (HEV). However, the energy management and design of power-split heavy duty truck under Chinese driving conditions still need to be investigated. In this paper, the parametric design, a rule-based control strategy and an equivalent consumption minimization strategy (ECMS) for the power-split heavy duty truck are presented. Besides, the influence of a penalty factor also discussed under ECMS algorithm. Meanwhile, two different methods to search the engine operation point have been proposed and the reason of different economy performance is presented by using energy flow chart. And the simulation results show both fuel consumption can satisfy the second phase fuel consumption standard and the third phase fuel consumption standard which will be implemented in 2020, under C-WTVC (Chinese-World Transient Vehicle Cycle).
Technical Paper

Experimental Investigation of Improving Homogeneous Charge Induced Ignition (HCII) Combustion at Medium and High Load by Reducing Compression Ratio

2017-03-28
2017-01-0765
This research focuses on the potential of Homogeneous Charge Induced Ignition (HCII) combustion meeting the Euro V emission standard on a heavy-duty multi-cylinder engine using a simple after-treatment system. However, in our previous studies, it was found that the gasoline ratio was limited in HCII by the over-high compression ratio (CR). In this paper, the effects of reducing CR on the performances of HCII at medium and high loads were explored by experimental methods. It was found that by reducing CR from 18:1 to 16:1 the peak in-cylinder pressure and the peak pressure rise rate were effectively reduced and the gasoline ratio range could be obviously extended. Thus, the combustion and emission characteristics of HCII at medium and high loads were noticeably improved. Soot emissions can be significantly reduced because of the increase of premixed combustion ratio. The reduction could be over 50% especially at high load and high speed conditions.
Technical Paper

Recycling-Based Reduction of Energy Consumption and Carbon Emission of China’s Electric Vehicles: Overview and Policy Analysis

2018-04-03
2018-01-0659
Electric vehicles maintain the fastest development in China and undertake the responsibility of optimizing energy consumption and carbon emission in the transportation field. However, from the entire life cycle point of view, although electric vehicles have a certain degree of energy consumption and carbon emission reduction in the use phase, they cause extra energy consumption and carbon emission in the manufacturing phase, which weakens the due environmental benefits to some extent. The recycling of electric vehicles can effectively address the issue and indirectly reduce the energy consumption and carbon emission in the manufacturing phase. China is setting up the recycling system and strengthening regulation force to achieve proper energy consumption and carbon emission reduction benefits of electric vehicles. Under the current electric vehicle recycling technologies, China can reduce about 34% of carbon emission in electric vehicle manufacturing phase.
X