Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Simulation of Diesel Engines Cold-Start

2003-03-03
2003-01-0080
Diesel engine cold-start problems include long cranking periods, hesitation and white smoke emissions. A better understanding of these problems is essential to improve diesel engine cold-start. In this study computer simulation model is developed for the steady state and transient cold starting processes in a single-cylinder naturally aspirated direct injection diesel engine. The model is verified experimentally and utilized to determine the key parameters that affect the cranking period and combustion instability after the engine starts. The behavior of the fuel spray before and after it impinges on the combustion chamber walls was analyzed in each cycle during the cold-start operation. The analysis indicated that the accumulated fuel in combustion chamber has a major impact on engine cold starting through increasing engine compression pressure and temperature and increasing fuel vapor concentration in the combustion chamber during the ignition delay period.
Technical Paper

The Burning Velocity in a CFR Engine with Different Turbulent Flow Fields Generated by Intake Valves

1980-06-01
800860
An equation has been derived to calculate the burning velocity in a CFR engine from the measured flame speed under different turbulent flow fields. The turbulence is generated during the intake stroke as the fresh charge flows through different perforated 360° shrouded intake valves. The shrouds have holes of different sizes, but of the same total flow area. Results show that these valves decrease the cycle-to-cycle variation and produce higher burning velocities than conventional valves, particularly at higher engine speeds. The burning velocity depends on the Reynolds number as well as the turbulence scale.
X