Refine Your Search

Topic

Author

Search Results

Journal Article

Achieving an 80% GHG Reduction by 2050 in California's Passenger Vehicle Fleet: Implications for the ZEV Regulation

2010-10-19
2010-01-2306
In recognizing the potential for large, damaging impacts from climate change, California enacted Executive Order S-03-05, requiring a reduction in statewide greenhouse gas (GHG) emissions to 80% below 1990 levels by 2050. Given that the transportation light-duty vehicle (LDV) segment accounts for 28% of the state's GHG emissions today, it will be difficult to meet the 2050 goal unless a portfolio of near-zero carbon transportation solutions is pursued. Because it takes decades for a new propulsion system to capture a large fraction of the passenger vehicle market due to vehicle fleet turn-over rates, it is important to accelerate the introduction of these alternatives to ensure markets enter into early commercial volumes (10,000s) between 2015 and 2020. This report summarizes the results and conclusions of a modeling exercise that simulated GHG emissions from the LDV sector to 2050 in California.
Journal Article

In-Use Emissions from Non-road Equipment for EPA Emissions Inventory Modeling (MOVES)

2010-10-05
2010-01-1952
Because of U.S. EPA regulatory actions and the National Academies National Research Council suggestions for improvements in the U.S. EPA emissions inventory methods, the U.S. EPA' Office of Transportation and Air Quality (OTAQ) has made a concerted effort to develop instrumentation that can measure criteria pollutant emissions during the operation of on-road and off-road vehicles. These instruments are now being used in applications ranging from snowmobiles to on-road passenger cars to trans-Pacific container ships. For the betterment of emissions inventory estimation these on-vehicle instruments have recently been employed to measure time resolved (1 hz) in-use gaseous emissions (CO₂, CO, THC, NO ) and particulate matter mass (with teflon membrane filter) emissions from 29 non-road construction vehicles (model years ranging from 1993 to 2007) over a three year period in various counties in Iowa, Missouri, and Kansas.
Journal Article

Emissions of PCDD/Fs, PCBs, and PAHs from a Modern Diesel Engine Equipped with Selective Catalytic Reduction Filters

2013-04-08
2013-01-1778
Exhaust emissions of seventeen 2,3,7,8-substituted chlorinated dibenzo-p-dioxin/furan (CDD/F) congeners, tetra-octa CDD/F homologues, twelve WHO 2005 chlorinated biphenyls (CB) congeners, mono-nona CB homologues, and nineteen polycyclic aromatic hydrocarbons (PAHs) from a model year 2008 Cummins ISB engine equipped with aftertreatment including a diesel oxidation catalyst (DOC) and wall flow copper or iron urea selective catalytic reduction filter (SCRF) were investigated. These systems differ from a traditional flow through urea selective catalytic reduction (SCR) catalyst because they place copper or iron catalyst sites in close proximity to filter-trapped particulate matter. These conditions could favor de novo synthesis of dioxins and furans. The results were compared to previously published results of modern diesel engines equipped with a DOC, catalyzed diesel particulate filter (CDPF) and flow through urea SCR catalyst.
Journal Article

Vehicle Component Benchmarking Using a Chassis Dynamometer

2015-04-14
2015-01-0589
The benchmarking study described in this paper uses data from chassis dynamometer testing to determine the efficiency and operation of vehicle driveline components. A robust test procedure was created that can be followed with no a priori knowledge of component performance, nor additional instrumentation installed in the vehicle. To develop the procedure, a 2013 Chevrolet Malibu was tested on a chassis dynamometer. Dynamometer data, emissions data, and data from the vehicle controller area network (CAN) bus were used to construct efficiency maps for the engine and transmission. These maps were compared to maps of the same components produced from standalone component benchmarking, resulting in a good match between results from in-vehicle and standalone testing. The benchmarking methodology was extended to a 2013 Mercedes E350 diesel vehicle. Dynamometer, emissions, and CAN data were used to construct efficiency maps and operation strategies for the engine and transmission.
Technical Paper

Effect of North American Certification Test Fuels on Emissions from On-Road Motorcycles

2021-09-21
2021-01-1225
Chassis dynamometer tests were conducted on three Class III on-highway motorcycles produced for the North American market and equipped with advanced emission control technologies in order to inform emissions inventories and compare the impacts of existing Tier 2 (E0) fuel with more market representative Tier 3 and LEV III certification fuels with 10% ethanol. For this study, the motorcycles were tested over the US Federal Test Procedure (FTP) and the World Motorcycle Test Cycle (WMTC) certification test cycles as well as a sample of real-world motorcycle driving informally referred to as the Real World Driving Cycle (RWDC). The primary interest was to understand the emissions changes of the selected motorcycles with the use of certification fuels containing 10% ethanol compared to 0% ethanol over the three test cycles.
Technical Paper

Benchmarking a 2018 Toyota Camry UB80E Eight-Speed Automatic Transmission

2020-04-14
2020-01-1286
As part of the U.S. Environmental Protection Agency’s (EPA’s) continuing assessment of advanced light-duty automotive technologies in support of regulatory and compliance programs, a 2018 Toyota Camry front wheel drive eight-speed automatic transmission was benchmarked. The benchmarking data were used as inputs to EPA’s Advanced Light-duty Powertrain and Hybrid Analysis (ALPHA) vehicle simulation model to estimate GHG emissions from light-duty vehicles. ALPHA requires both detailed engine fuel consumption maps and transmission torque loss maps. EPA’s National Vehicle and Fuels Emissions Laboratory has developed a streamlined, cost-effective in-house method of transmission testing, capable of gathering a dataset sufficient to characterize transmissions within ALPHA. This testing methodology targets the range of transmission operation observed during vehicle testing over EPA’s city and highway drive cycles.
Technical Paper

Evaluating the Performance of a Conventional and Hybrid Bus Operating on Diesel and B20 Fuel for Emissions and Fuel Economy

2020-04-14
2020-01-1351
With ongoing concerns about the elevated levels of ambient air pollution in urban areas and the contribution from heavy-duty diesel vehicles, hybrid electric vehicles are considered as a potential solution as they are perceived to be more fuel efficient and less polluting than their conventional engine counterparts. However, recent studies have shown that real-world emissions may be substantially higher than those measured in the laboratory, mainly due to operating conditions that are not fully accounted for in dynamometer test cycles. At the U.S. EPA National Fuel and Vehicle Emissions Laboratory (NVFEL) the in-use criteria emissions and energy efficiency of heavy-duty class 8 vehicles (up to 36280 kg) can be evaluated under controlled conditions in the heavy-duty chassis dynamometer test.
Journal Article

Development and Testing of an Automatic Transmission Shift Schedule Algorithm for Vehicle Simulation

2015-04-14
2015-01-1142
The Advanced Light-Duty Powertrain and Hybrid Analysis (ALPHA) tool was created by EPA to estimate greenhouse gas (GHG) emissions from light-duty (LD) vehicles [1]. ALPHA is a physics-based, forward-looking, full vehicle computer simulation capable of analyzing various vehicle types combined with different powertrain technologies. The software tool is a MATLAB/Simulink based desktop application. In order to model the behavior of current and future vehicles, an algorithm was developed to dynamically generate transmission shift logic from a set of user-defined parameters, a cost function (e.g., engine fuel consumption) and vehicle performance during simulation. This paper presents ALPHA's shift logic algorithm and compares its predicted shift points to actual shift points from a mid-size light-duty vehicle and to the shift points predicted using a static table-based shift logic as calibrated to the same vehicle during benchmark testing.
Journal Article

Characterizing Factors Influencing SI Engine Transient Fuel Consumption for Vehicle Simulation in ALPHA

2017-03-28
2017-01-0533
The U.S. Environmental Protection Agency’s (EPA’s) Advanced Light-Duty Powertrain and Hybrid Analysis (ALPHA) tool was created to estimate greenhouse gas (GHG) emissions from light-duty vehicles. ALPHA is a physics-based, forward-looking, full vehicle computer simulation capable of analyzing various vehicle types with different powertrain technologies, showing realistic vehicle behavior, and auditing of all energy flows in the model. In preparation for the midterm evaluation (MTE) of the 2017-2025 light-duty GHG emissions rule, ALPHA has been refined and revalidated using newly acquired data from model year 2013-2016 engines and vehicles. The robustness of EPA’s vehicle and engine testing for the MTE coupled with further validation of the ALPHA model has highlighted some areas where additional data can be used to add fidelity to the engine model within ALPHA.
Technical Paper

Evaluation of Cylinder Deactivation on a Class 8 Truck over Light Load Cycles

2020-04-14
2020-01-0800
Selective Catalytic Reduction (SCR) systems provide excellent NOX control for diesel engines provided the exhaust aftertreatment inlet temperature remains at 200° C or higher. Since diesel engines run lean, extended light load operation typically causes exhaust temperatures to fall below 200° C and SCR conversion efficiency diminishes. Heated urea dosing systems are being developed to allow dosing below 190° C. However, catalyst face plugging remains a concern. Close coupled SCR systems and lower temperature formulation of SCR systems are also being developed, which add additional expense. Current strategies of post fuel injection and retarded injection timing increases fuel consumption. One viable keep-warm strategy examined in this paper is cylinder deactivation (CDA) which can increase exhaust temperature and reduce fuel consumption.
Journal Article

A Comparison of Spray-Guided Stratified-Charge Combustion Performance with Outwardly-Opening Piezo and Multi-Hole Solenoid Injectors

2011-04-12
2011-01-1217
This investigation was aimed at measuring the relative performance of two spray-guided, single-cylinder, spark-ignited direct-injected (SIDI) engine combustion system designs. The first utilizes an outwardly-opening poppet, piezo-actuated injector, and the second a conventional, solenoid operated, inwardly-opening multi-hole injector. The single-cylinder engine tests were limited to steady state, warmed-up conditions. The comparison showed that these two spray-guided combustion systems with two very different sprays had surprisingly close results and only differed in some details. Combustion stability and smoke emissions of the systems are comparable to each other over most of the load range. Over a simulated Federal Test Procedure (FTP) cycle, the multi-hole system had 15% lower hydrocarbon and 18% lower carbon monoxide emissions.
Journal Article

Particulate Emissions for LEV II Light-Duty Gasoline Direct Injection Vehicles

2012-04-16
2012-01-0442
Since the mid-1990s, light-duty vehicles equipped with gasoline direct injection (GDI) engines have been added to the vehicle fleet in increasing numbers. Compared to conventional port fuel injection (PFI) engines, GDI engines provide higher power output for the same size engine, higher fuel efficiency, and lower carbon dioxide (CO₂) emissions. Due to the paucity of particulate matter (PM) emission data for light-duty gasoline vehicles in general and the increasing interest in these emissions relative to climate and air quality concerns, it is important to investigate PM emissions from current-generation GDI technologies. In this study, nine 2007-2010 light-duty GDI vehicles equipped with either wall-guided or spray-guided fuel injection systems were tested using California commercial gasoline fuel containing six percent ethanol by volume. Criteria pollutants including gaseous and PM emissions were measured over the Federal Test Procedure (FTP) transient test cycle.
Journal Article

Evaluation of the Impacts of Biofuels on Emissions for a California Certified Diesel Fuel from Heavy-Duty Engines

2013-04-08
2013-01-1138
The impact of biodiesel and new generation biofuels on emissions from heavy-duty diesel engines was investigated using a California Air Resources Board (CARB) certified diesel fuel as a base fuel. This study was performed on two heavy-duty diesel engines, a 2006 engine and a diesel particle filter (DPF) equipped 2007 engine, on an engine dynamometer over four different test cycles. Emissions from soy-based and animal-based biodiesel, renewable diesel fuel, and gas-to-liquid (GTL) diesel fuel were evaluated at blend levels ranging from 5 to 100%. Consistent with previous studies, particulate matter (PM), hydrocarbons (HC), and carbon monoxide (CO) emissions generally showed increasing reductions with increasing biodiesel and renewable/GTL diesel fuel blend levels for the non-DPF equipped engine. The levels of these reductions were generally comparable to those found in previous studies performed using more typical Federal diesel fuels.
Journal Article

A Pilot Study of Fuel Impacts on PM Emissions from Light-Duty Gasoline Vehicles

2015-04-01
2015-01-9071
A pilot study was performed to explore the effects of PM Index, low and high molecular weight aromatics, and ethanol content on particulate matter (PM) emissions from light-duty Tier 2 gasoline vehicles. Four test vehicles from model years 2007-2009 were tested on seven fuels spanning PM Index values from 0.9 to 2.7, aromatic content from 14 to 38%, and ethanol content from 0 to 15%. Three of the test vehicles were port fuel injected (PFI) while the fourth featured gasoline direct injection (GDI). In an earlier program, two of the PFI vehicles demonstrated high sensitivity of PM emissions to fuel property changes while the third showed low sensitivity. The sensitivity of the GDI vehicle to fuel property changes was not known prior to this study. The vehicles were tested over the LA92 and US06 test cycles at 24°C (75°F). PM and regulated gaseous emissions were measured by test phase. Second-by-second tailpipe soot emissions were measured using the AVL Micro Soot Sensor.
Journal Article

Determination of the R Factor for Fuel Economy Calculations Using Ethanol-Blended Fuels over Two Test Cycles

2014-04-01
2014-01-1572
During the 1980s, the U.S. Environmental Protection Agency (EPA) incorporated the R factor into fuel economy calculations in order to address concerns about the impacts of test fuel property variations on corporate average fuel economy (CAFE) compliance, which is determined using the Federal Test Procedure (FTP) and Highway Fuel Economy Test (HFET) cycles. The R factor is defined as the ratio of the percent change in fuel economy to the percent change in volumetric heating value for tests conducted using two differing fuels. At the time the R-factor was devised, tests using representative vehicles initially indicated that an appropriate value for the R factor was 0.6. Reassessing the R factor has recently come under renewed interest after EPA's March 2013 proposal to adjust the properties of certification gasoline to contain significant amounts of ethanol.
Technical Paper

Detection of Gasoline Vehicles with Gross PM Emissions

2007-04-16
2007-01-1113
Light duty gasoline vehicles (LDGV) are estimated to contribute 40% of the total on-road mobile source tailpipe emissions of particulate matter (PM) in California. While considerable efforts have been made to reduce toxic diesel PM emissions going into the future, less emphasis has been placed on PM from LDGVs. The goals of this work were to characterize a small fleet of visibly smoking and high PM emitting LDGVs, to explore the potential PM-reduction benefits of Smog Check and of repairs, and to examine remote sensing devices (RSD) as a potential method for identifying high PM emitters in the in-use fleet. For this study, we recruited a fleet of eight vehicles covering a spectrum of PM emission levels. PM and criteria pollutant emissions were quantified on a dynamometer and CVS dilution tunnel system over the Unified Cycle using standard methods and real time PM instruments.
Technical Paper

California's Revised Heavy-Duty Vehicle Smoke and Tampering Inspection Program

1998-08-11
981951
Heavy-duty vehicles account for approximately 30 percent of the oxides of nitrogen (NOx) and 65 percent of the particulate matter (PM) emissions from the entire California on-road fleet, despite the fact that these vehicles comprise only 2 percent of the same. To meet legislative mandates to reduce excess smoke emissions from in-use heavy-duty diesel-powered vehicles, the Air Resources Board (ARB or Board) adopted, in December 1997, amendments to the regulations governing the operation and enforcement of the Heavy-Duty Vehicle Inspection Program (HDVIP or the “roadside” program) and the Periodic Smoke Inspection Program (PSIP or the “fleet” program). The initial roadside program was adopted in November 1990 in response to Senate Bill (SB) 1997 (stat. 1988, ch. 1544, Presley), and enforced from 1991 to 1993. It was suspended in October 1993, when the Board redirected staff to investigate reformulated fuels issues.
Technical Paper

On-road and In-Laboratory Testing to Demonstrate Effects of ULSD, B20 and B99 on a Retrofit Urea-SCR Aftertreatment System

2009-11-02
2009-01-2733
In order to demonstrate the performance of a retrofitted selective catalytic reduction (SCR) system while also addressing the issues associated with greater use of biodiesel, a 2005 International 9200i tractor owned by the City of Santa Monica was retrofitted with a titania-vanadia-tungsten catalyst and a urea dosing system supplied by Extengine Systems, Inc. This tractor was operated under normal service conditions within the City of Santa Monica refuse collection and transportation fleet. An on-board emissions measurement system supplied by Engine, Fuel, and Emissions Engineering, Inc. was installed on the vehicle; it measured the emissions and fuel use of the vehicle while it operated on ultra-low-sulfur diesel (ULSD), 20% biodiesel (B20), and 99% biodiesel (B99) on consecutive days.
Technical Paper

Evaluation of Fluorocarbon Polymer Bag Material for Near Zero Exhaust Emission Measurement

2001-09-24
2001-01-3535
When the California Air Resources Board (ARB) adopted automotive exhaust emission standards for Super Ultra-Low-Emission Vehicles (SULEV), new challenges were encountered for accurately measuring exhaust emissions. This is especially true for measuring NMOG emissions (NMHC and carbonyls) where the SULEV standard is 0.010 g/mi. One of the challenges in accurately measuring NMHC emissions is to find a clean sample bag material that has no or very low outgassing of hydrocarbons. Tedlar, the bag material commonly used for exhaust emission sampling, has been found to emit N,N- dimethylacetamide (DMAc), which interferes with hydrocarbon measurements and can contribute to significant error in SULEV hydrocarbon emission measurements. Several fluorocarbon materials were tested for hydrocarbon (HC) outgassing and carbon dioxide (CO2) permeation. The materials include Tedlar, Baked Tedlar, KynarFlex 2750, Baked KynarFlex 2800, Teflon FEP, TFM TFE, Tefzel, and Halar.
X