Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

A Lightweight Spatio-Temporally Partitioned Multicore Architecture for Concurrent Execution of Safety Critical Workloads

2016-09-20
2016-01-2067
Modern aircraft systems employ numerous processors to achieve system functionality. In particular, engine controls and power distribution subsystems rely heavily on software to provide safety-critical functionality, and are expected to move toward multicore architectures. The computing hardware-layer of avionic systems must be able to execute many concurrent workloads under tight deterministic execution guarantees to meet the safety standards. Single-chip multicores are attractive for safety-critical embedded systems due to their lightweight form factor. However, multicores aggressively share hardware resources, leading to interference that in turn creates non-deterministic execution for multiple concurrent workloads. We propose an approach to remove on-chip interference via a set of methods to spatio-temporally partition shared multicore resources.
Technical Paper

Electromagnetic Compatibility and Interference - Design Methodology, Challenges and Guidelines for Avionics Product and Systems

2017-09-19
2017-01-2118
Avionics industry is moving towards more electric & lightweight aircrafts. Electromagnetic effects becomes significantly challenging as materials starts moving towards composite type. Traditional methods for controlling EMC will not be sufficient. This shift increases the complexity of in-flight hardware elements for EMI/EMC control. This paper discusses the need for EMI/EMC Control and brings out the analysis & applicability of various EMI/EMC standards in aerospace, commercial and industrial electronic products, provides comparative study with respect to levels. The study include various sections of DO-160 and applicable guidelines for controlling EMI/EMC with respect to LRU (Line Replaceable Unit) & wire/cable harnesses. Also presents guidelines with respect to shielding of components, selection of components, grounding schemes, filter topologies and layout considerations.
Technical Paper

A Methodology for Formal Requirements Validation and Automatic Test Generation and Application to Aerospace Systems

2018-10-30
2018-01-1948
Automation on Validation and Verification (V&V) leveraging Formal Methods, and in particular Model Checking, is seeing an increasing use in the Aerospace domain. In recent years, Formal Methods have been used to verify systems and software and its correctness as a way to augment traditional methods relying on simulation and testing. Recent updates to the relevant Aerospace regulations (e.g. DO178C, DO331 and DO333) now have explicit provisions for utilization of models and formal methods. In a previous paper a compositional methodology for the verification of Aerospace Systems has been described with application to Electrical Power Generation and Distribution Systems. In this paper we present an expansion of the previous work in two directions. First, we describe the application of the methodology to the validation of Proximity Sensing Systems (PSS) requirements showing the effectiveness of the method to a new aerospace domain.
Technical Paper

Embedded COTS - A Gateway for New Processors/High Performing Machines to Digital Avionics System Industry

2014-09-16
2014-01-2206
Today's digital avionics systems leverage the use of the Embedded COTS (Commercial Off The Shelf) hardware to fit the need of small form factor, low power, reduced time to market and reduced development time with efficient use of DO-254 for compliance of product. COTS modules are entering in digital avionics systems such as COM (Computer On Module)/SOM (System On Module)/SIP (System In Package) with huge advancement in semiconductor and packaging industry. In today's scenario COTS are very useful for DAL (Development Assurance Level) C and below as the efforts on compliance for DAL A and B are huge. This paper proposes to use these for DAL A and B as well, where one can get enormous benefit on efforts of compliance and time to market. This paper makes an attempt to explain the current scenario of the Embedded COTS usage in Avionics Systems.
Technical Paper

Wireless Sensing - Future's Password to Digital Avionics System

2014-09-16
2014-01-2132
Performance of Avionics systems is dictated by the timely availability and usage of critical health parameters. Various sensors are extensively used to acquire and communicate the desired parameters. In today's scenario, sensors are hardwired. The number of sensors is growing due to automation which increases the accuracy of intended Aircraft functions. Sensors are distributed all over the Aircraft and they are connected through wired network for signal processing and communication. LRUs (Line Replaceable Unit) which are integrating various sensors also use a wired approach for communication. The use of a wired network approach poses challenges in terms of cable routing, stray capacitances, noise, mechanical structure and added weight to the structure. The weight of cables contributes significantly to the overall weight of the aircraft. As the weight of Aircraft increases, the required fuel quantity also increases. The Key driver for Airline operational cost is fuel.
Technical Paper

Evaluation of Key Certification Aspects of Multi Core Platforms for Safety Critical Applications in Avionics Industry

2015-09-15
2015-01-2524
Multi core platforms offer high performance at low power and have been deemed as future of size, weight and power constrained applications like avionics safety critical applications. Multi core platforms are widely used in non-real time systems where the average case performance is desired like in consumer electronics, telecom domains. Despite these advantages, multi core platforms (hardware and software) pose significant certification challenges for safety critical applications and hence there has been limited usage in avionics and other safety critical applications. Many multicore platform solutions which can be certified to DO-254 & DO 178B Level A are commercially available. There is a need to evaluate these platforms w.r.t certification requirements before deploying them in the safety critical systems thereby reducing the program risks. This paper discusses the advantages of multi core platforms in terms of performance, power consumption and weight/size.
Technical Paper

DO-254/ED-80 - An Application Guidelines to Redesign/Re-Engineering Airborne Electronic Hardware

2016-09-20
2016-01-2039
Avionics industry is moving towards fly-by wire aircrafts with less reliance on mechanical systems leading to increase in the complexity of in-flight hardware elements. RTCA/DO-254 and EUROCAE ED-80 plays a vital role in the design assurance of airborne electronic hardware. RTCA/ DO-254 and EUROCAE ED-80 are the industry standards for Design Assurance Guidance for Airborne Electronic Hardware. The two different agencies FAA and EU regulate and apply this design assurance guidance to the regulatory law in CFR and EASA CS respectively. This paper discusses the need for DO-254 /ED-80 certification in Aerospace industry, the advantages and benefits to the avionics manufacturers. The paper presents the study made on similarities and differences between DO-254/ED-80.
X