Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Spark Ignition Discharge Characteristics under Quiescent Conditions and with Convective Flows

2021-09-21
2021-01-1157
The arc characteristics and discharge behavior of a representative inductive spark ignition system were characterized with a spark plug calorimeter and a constant volume vessel used to create high-pressure crossflow velocities through the gap of the spark plug. A 14 mm diameter natural gas engine spark plug was used for the measurements. The discharges were into a non-combusting gas, primarily nitrogen. The spark plug calorimeter was used to determine the electrical-to-thermal energy conversion in the spark gap under quiescent conditions, while the constant volume vessel was used to study ignition arc structure in convective crossflows and imaged with a high-speed camera. Topics included the effect of crossflow velocity, pressure (up to 20 bar at 300 K), and gap distance on breakdown voltage, arc duration and delivered electrical energy. Also of interest was the amount of remaining electrical energy on the coil versus spark duration in a cross flow.
Technical Paper

Comparison of an On-Board, Real-Time Electronic PM Sensor with Laboratory Instruments Using a 2009 Heavy-Duty Diesel Vehicle

2011-04-12
2011-01-0627
EmiSense Technologies, LLC (www.emisense.com) is commercializing its electronic particulate matter (PM) sensor that is based on technology developed at the University of Texas at Austin (UT). To demonstrate the capability of this sensor for real-time PM measurements and on board diagnostics (OBD) for failure detection of diesel particle filters (DPF), independent measurements were performed to characterize the engine PM emissions and to compare with the PM sensor response. Computational fluid dynamics (CFD) modeling was performed to characterize the hydrodynamics of the sensor's housing and to develop an improved PM sensor housing with reproducible hydrodynamics and an internal baffle to minimize orientation effects. PM sensors with the improved housing were evaluated in the truck exhaust of a heavy duty (HD) diesel engine tested on-road and on a chassis dynamometer at the University of California, Riverside (UCR) using their Mobile Emissions Laboratory (MEL).
X