Refine Your Search

Topic

Author

Search Results

Journal Article

Influence of Injection Timing and Piston Bowl Geometry on PCCI Combustion and Emissions

2009-04-20
2009-01-1102
Premixed Charge Compression Ignition (PCCI), a Low Temperature Combustion (LTC) strategy for diesel engines is of increasing interest due to its potential to simultaneously reduce soot and NOx emissions. However, the influence of mixture preparation on combustion phasing and heat release rate in LTC is not fully understood. In the present study, the influence of injection timing on mixture preparation, combustion and emissions in PCCI mode is investigated by experimental and computational methods. A sequential coupling approach of 3D CFD with a Stochastic Reactor Model (SRM) is used to simulate the PCCI engine. The SRM accounts for detailed chemical kinetics, convective heat transfer and turbulent micro-mixing. In this integrated approach, the temperature-equivalence ratio statistics obtained using KIVA 3V are mapped onto the stochastic particle ensemble used in the SRM.
Journal Article

Analysis of In-Cylinder Hydrocarbons in a Multi-Cylinder Gasoline HCCI Engine Using Gas Chromatography

2009-11-02
2009-01-2698
Gasoline Homogeneous Charge Compression Ignition (HCCI) combustion has been studied widely in the past decade. However, in HCCI engines using negative valve overlap (NVO), there is still uncertainty as to whether the effect of pilot injection during NVO on the start of combustion is primarily due to heat release of the pilot fuel during NVO or whether it is due to pilot fuel reformation. This paper presents data taken on a 4-cylinder gasoline direct injection, spark ignition/HCCI engine with a dual cam system, capable of recompressing residual gas. Engine in-cylinder samples are extracted at various points during the engine cycle through a high-speed sampling system and directly analysed with a gas chromatograph and flame ionisation detector. Engine parameter sweeps are performed for different pilot injection timings and quantities at a medium load point.
Journal Article

Spray Characteristics Study of DMF Using Phase Doppler Particle Analyzer

2010-05-05
2010-01-1505
2,5-dimethylfuran (DMF) is currently regarded as a potential alternative fuel to gasoline due to the development of new production technology. In this paper, the spray characteristics of DMF and its blends with gasoline were studied from a high pressure direct injection gasoline injector using the shadowgraph and Phase Doppler Particle Analyzer (PDPA) techniques, This includes the spray penetration, droplet velocity and size distribution of the various mixtures. In parallel commercial gasoline and ethanol were measured in order to compare the characteristics of DMF. A total of 52 points were measured along the spray so that the experimental results could be used for subsequent numerical modeling. In summary, the experimental results showed that DMF and its blends have similar spray properties to gasoline, compared to ethanol. The droplet size of DMF is generally smaller than ethanol and decreases faster with the increase of injection pressure.
Journal Article

The Particle Emissions Characteristics of a Light Duty Diesel Engine with 10% Alternative Fuel Blends

2010-05-05
2010-01-1556
In this study, the particle emission characteristics of 10% alternative diesel fuel blends (Rapeseed Methyl Ester and Gas-to-Liquid) were investigated through the tests carried out on a light duty common-rail Euro 4 diesel engine. Under steady engine conditions, the study focused on particle number concentration and size distribution, to comply with the particle metrics of the European Emission Regulations (Regulation NO 715/2007, amended by 692/2008 and 595/2009). The non-volatile particle characteristics during the engine warming up were also investigated. They indicated that without any modification to the engine, adding selected alternative fuels, even at a low percentage, can result in a noticeable reduction of the total particle numbers; however, the number of nucleation mode particles can increase in certain cases.
Journal Article

Investigation of Wear Behavior of Aluminum Alloy Reinforced with Carbon Nanotubes

2014-04-01
2014-01-1008
The material demands for advanced technologies have led to development of new generation, light-weight, and multi-functional materials. Aluminum matrix composites (AMCs) have captured considerable attention in aviation, space and automotive industries in recent years. Carbon nanotubes (CNT) are one of the most promising candidate of reinforcements used to improve mechanical strength and hardness of metal matrix composites (MMCs). In this study, dry sliding wear behavior of aluminum (Al) matrix (MMCs) reinforced with different amounts (0, 0.5, 1 and 2 wt%) of CNTs were prepared through ball milling, the process was followed by compaction at room temperature and pressureless sintering at 630 °C under argon atmosphere for 1hr. Wear tests were performed on a pin-on-disk tribometer against SAE 1040 steel counter body under constant load and sliding speed at room temperature.
Technical Paper

Conditional Moment Closure Approaches for Simulating Soot and NOx in a Heavy-Duty Diesel Engine

2021-09-05
2021-24-0041
A heavy-duty diesel engine (ETH-LAV single cylinder MTU396 heavy duty research engine) was simulated by RANS and advanced reacting flow models to gain insight into its soot and NOx emissions. Due to symmetry, a section of the engine containing a single injector-hole was simulated. Dodecane was used as a surrogate to emulate the evaporation properties of diesel and a 22-step reaction mechanism for n-heptane was used to describe combustion. The Conditional Moment Closure (CMC) method was used as the combustion model in two ways. In a more conventional modelling approach, CMC was fully interfaced with the CFD and a two-equation model was employed for determining soot while the extended Zeldovich mechanism was used for NOx. In a second approach called the Imperfectly Stirred Reactor (ISR) method, the CMC equation was integrated over space and the previous RANS-CMC solution was further analysed in a post-processing step with the focus on soot.
Journal Article

Reformate Exhaust Gas Recirculation (REGR) Effect on Particulate Matter (PM), Soot Oxidation and Three Way Catalyst (TWC) Performance in Gasoline Direct Injection (GDI) Engines

2015-09-01
2015-01-2019
Gasoline direct injection (GDI) engines have become very attractive in transportation due to several benefits over preceding engine technologies. However, GDI engines are associated with higher levels of particulate matter (PM) emissions, which is a major concern for human health. The aim of this work is to broaden the understanding of the effect of hydrogen combustion and the influence of the three way catalytic converter (TWC) on PM emission characteristics. The presence of hydrogen in GDI engines has been reported to reduce fuel consumption and improve the combustion process, making it possible to induce higher rates of EGR. A prototype exhaust fuel reformer build for on-board vehicle hydrogen-rich gas (reformate) production has been integrated within the engine operation and studied in this work.
Journal Article

An Experimental Study on Truck Side-Skirt Flow

2016-04-05
2016-01-1593
The underbody of a truck is responsible for an appreciable portion of the vehicle’s aerodynamic drag, and thus its fuel consumption. This paper investigates experimentally the flow around side-skirts, a common underbody aerodynamic device which is known to be effective at reducing vehicle drag. A full, 1/10 scale European truck model is used. The chassis of the model is designed to represent one that would be found on a typical trailer, and is fully reconfigurable. Testing is carried out in a water towing tank, which allows the correct establishment of the ground flow and rotating wheels. Optical access into the underbody is possible through the clear working section of the facility. Stereoscopic and planar Particle Image Velocimetry (PIV) set-ups are used to provide both qualitative images of and quantitative information on the flow field.
Journal Article

A Method for Truck Underbody Aerodynamic Investigation

2016-09-16
2016-01-9020
The underbody of a truck is responsible for an appreciable portion of the vehicle’s aerodynamic drag, and thus its fuel consumption. A better understanding of the underbody aerodynamics could lead to designs that are more environmentally friendly. Unfortunately there are difficulties with correctly replicating the ground condition and rotating wheels when using the classical approach of a wind-tunnel for aerodynamic investigation. This in turn leads to computational modelling problems. A lack of experimental data for Computational Fluid Dynamics (CFD) validation means that the flow field in this area has seldom been investigated. There is thus very little information available for the optimisation and design of underbody aerodynamic devices. This paper investigates the use of a water-towing tank, which allows the establishment of the correct near-ground flow while permitting good optical access. Using a 1/10 scale model, Reynolds Numbers of around 0.7 million are achieved.
Journal Article

Fundamental Aspects of Jet Ignition for Natural Gas Engines

2017-09-04
2017-24-0097
Large-bore natural gas engines may use pre-chamber ignition. Despite extensive research in engine environments, the exact nature of the jet, as it exits the pre-chamber orifice, is not thoroughly understood and this leads to uncertainty in the design of such systems. In this work, a specially-designed rig comprising a quartz pre-chamber fit with an orifice and a turbulent flowing mixture outside the pre-chamber was used to study the pre-chamber flame, the jet, and the subsequent premixed flame initiation mechanism by OH* and CH* chemiluminescence. Ethylene and methane were used. The experimental results are supplemented by LES and 0D modelling, providing insights into the mass flow rate evolution at the orifice and into the nature of the fluid there. Both LES and experiment suggest that for large orifice diameters, the flow that exits the orifice is composed of a column of hot products surrounded by an annulus of unburnt pre-chamber fluid.
Journal Article

A Detailed Chemistry Multi-cycle Simulation of a Gasoline Fueled HCCI Engine Operated with NVO

2009-04-20
2009-01-0130
A previously developed Stochastic Reactor Model (SRM) is used to simulate combustion in a four cylinder in-line four-stroke naturally aspirated direct injection Spark Ignition (SI) engine modified to run in Homogeneous Charge Compression Ignition (HCCI) mode with a Negative Valve Overlap (NVO). A portion of the fuel is injected during NVO to increase the cylinder temperature and enable HCCI combustion at a compression ratio of 12:1. The model is coupled with GT-Power, a one-dimensional engine simulation tool used for the open valve portion of the engine cycle. The SRM is used to model in-cylinder mixing, heat transfer and chemistry during the NVO and main combustion. Direct injection is simulated during NVO in order to predict heat release and internal Exhaust Gas Recycle (EGR) composition and mass. The NOx emissions and simulated pressure profiles match experimental data well, including the cyclic fluctuations.
Journal Article

Multi-dimensional Conditional Moment Closure Modelling Applied to a Heavy-duty Common-rail Diesel Engine

2009-04-20
2009-01-0717
A multi-dimensional combustion code implementing the Conditional Moment Closure turbulent combustion model interfaced with a well-established RANS two-phase flow field solver has been employed to study a broad range of operating conditions for a heavy duty direct-injection common-rail Diesel engine. These conditions include different loads (25%, 50%, 75% and full load) and engine speeds (1250 and 1830 RPM) and, with respect to the fuel path, different injection timings and rail pressures. A total of nine cases have been simulated. Excellent agreement with experimental data has been found for the pressure traces and the heat release rates, without adjusting any model constants. The chemical mechanism used contains a detailed NOx sub-mechanism. The predicted emissions agree reasonably well with the experimental data considering the range of operating points and given no adjustments of any rate constants have been employed.
Journal Article

Development of Virtual Testing of EGR Coolant Rail

2013-04-08
2013-01-1373
Vibration testing is carried out as part of the sign-off procedure for vehicle body and power unit mounted components to ensure that the components can survive their working life without damage. The paper describes the development of numerical techniques to replicate the vibration testing of a Diesel Engine EGR Coolant Rail. A Finite element (FE) model of the coolant rail was developed and validated. Subsequently, detailed FE models of the rubber hoses were developed and added to the coolant rail model in order to carry out a forced response analysis of the structure. Results from physical tests of the structure showed good agreement with the simulation results. A method is proposed for including the effect of the rubber hoses in the FE models of body and power unit mounted components using spring-dashpot elements. This is to avoid modelling the hoses in detail with resultant savings in computational costs.
Journal Article

An Aerosolization Method for Characterizing Particle Contaminants in Diesel Fuel

2013-10-14
2013-01-2668
Diesel fuel injection systems are operating at increasingly higher pressure (up to 250 MPa) with smaller clearances, making them more sensitive to diesel fuel contaminants. Most liquid particle counters have difficulty detecting particles <4 μm in diameter and are unable to distinguish between solid and semi-solid materials. The low conductivity of diesel fuel limits the use of the Coulter counter. This raises the need for a new method to characterize small (<4 μm) fuel contaminants. We propose and evaluate an aerosolization method for characterizing solid particulate matter in diesel fuel that can detect particles as small as 0.5 μm. The particle sizing and concentration performance of the method were calibrated and validated by the use of seed particles added to filtered diesel fuel. A size dependent correction method was developed to account for the preferential atomization and subsequent aerosol conditioning processes to obtain the liquid-borne particle concentration.
Journal Article

A Miniature Catalytic Stripper for Particles Less Than 23 Nanometers

2013-04-08
2013-01-1570
The European Emissions Stage 5b standard for diesel passenger cars regulates particulate matter to 0.0045 g/km and non-volatile part/km greater than 23 nm size to 6.0x10₁₁ as determined by the PMP procedure that uses a heated evaporation tube to remove semi-volatile material. Measurement artifacts associated with the evaporation tube technique prevents reliable extension of the method to a lower size range. Catalytic stripper (CS) technology removes possible sources of these artifacts by effectively removing all hydrocarbons and sulfuric acid in the gas phase in order to avoid any chemical reactions or re-nucleation that may cause measurement complications. The performance of a miniature CS was evaluated and experimental results showed solid particle penetration was 50% at 10.5 nm. The sulfate storage capacity integrated into the CS enabled it to chemically remove sulfuric acid vapor rather than rely on dilution to prevent nucleation.
Journal Article

A Forward-Looking Stochastic Fleet Assessment Model for Analyzing the Impact of Uncertainties on Light-Duty Vehicles Fuel Use and Emissions

2012-04-16
2012-01-0647
Transport policy research seeks to predict and substantially reduce the future transport-related greenhouse gas emissions and fuel consumption to prevent negative climate change impacts and protect the environment. However, making such predictions is made difficult due to the uncertainties associated with the anticipated developments of the technology and fuel situation in road transportation, which determine the total fuel use and emissions of the future light-duty vehicle fleet. These include uncertainties in the performance of future vehicles, fuels' emissions, availability of alternative fuels, demand, as well as market deployment of new technologies and fuels. This paper develops a methodology that quantifies the impact of uncertainty on the U.S. transport-related fuel use and emissions by introducing a stochastic technology and fleet assessment model that takes detailed technological and demand inputs.
Technical Paper

Investigation into Partially Premixed Combustion in a Light-Duty Multi-Cylinder Diesel Engine Fuelled Gasoline and Diesel with a Mixture of

2007-10-29
2007-01-4058
Partially premixed compression ignition (PPCI) engines operating with a low temperature highly homogeneous charge have been demonstrated previously using conventional diesel fuel. The short ignition delay of conventional diesel fuel requires high fuel injection pressures to achieve adequate premixing along with high levels of EGR (exhaust gas recirculation) to achieve low NOx emissions. Low load operating regions are typified by substantial emissions of CO and HC and there exists an upper operating load limitation due to very high rates of in-cylinder gas pressure rise. In this study mixtures of gasoline and diesel fuel were investigated using a multi-cylinder light duty diesel engine. It was found that an increased proportion of gasoline fuel reduced smoke emissions at higher operating loads through an increase in charge premixing resulting from an increase in ignition delay and higher fuel volatility.
Technical Paper

Highly Homogeneous Compression Ignition in a Direct Injection Diesel Engine Fuelled with Diesel and Biodiesel

2007-07-23
2007-01-2020
Highly homogeneous compression ignition is difficult to achieve in a direct injection diesel engine. The difficulty of achieving adequate fuel vaporization and the problems of fuel spray wall impingement are the main factors. Limitation of the maximum operating load results from high rates of pressure rise that occur in this combustion regime. The levels of HC and CO emissions are raised substantially when compared with conventional combustion and remain a significant emission factor. In this study, two methods of achieving highly homogeneous combustion in a direct injection diesel engine were investigated, Nissan MK type and early injection. The effects of fuel injection pressure, injection timing, EGR level, EGR cooler efficiency and compression ratio were examined using a conventional 4 cylinder 2.0L common rail diesel engine with 18.4:1 and 14.4:1 compression ratios.
Technical Paper

The Fast FID as a Velocimeter for Flow Measurements in an Automotive Catalyst

1998-02-01
980879
The gas velocity through an automotive catalyst has been determined by measuring the time of flight of a pulse of propane injected at the inlet plane of the catalyst. The arrival time at the exit plane was detected by a fast flame ionization detector. By synchronizing and delaying the injection of propane with respect to the engine crankshaft position, the fluctuations of the exhaust gas velocity during the engine cycle were investigated. A number of tests at different engine load and speed points were carried out. The results show a complex velocity/time characteristic, including flow reversals. The technique is shown to be a viable option for flow measurement in this harsh environment.
Technical Paper

Novel Methods for Characterizing the Mechanical Durability of Automobile Paint Systems

1998-02-23
980977
This paper presents two new methods to quantitatively evaluate the mechanical durability of multi-layered automotive paint systems. The first examines the resistance of the paint system to particle impacts and involves the impact of hard particles against the painted surface, under controlled conditions. The second test examines the resistance of the clearcoat layer in the paint system to surface abrasion, or mar. The test uses a steel sphere which is rotated against the paint surface in the presence of a slurry of fine abrasive particles. These two techniques have been successfully applied to a set of commercial automobile paints, and were found to discriminate well between them and give reproducible, quantitative data. The effects of the bake conditions on both the erosion and abrasion resistance of a full paint system and the abrasion resistance of a range of commercial clearcoats are examined in detail.
X