Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

Advanced Numerical and Experimental Techniques for the Extension of a Turbine Mapping

2013-09-08
2013-24-0119
1D codes are nowadays commonly used to investigate a turbocharged ICE performance, turbo-matching and transient response. The turbocharger is usually described in terms of experimentally derived characteristic maps. The latter are commonly measured using the compressor as a brake for the turbine, under steady “hot gas” tests. This approach causes some drawbacks: each iso-speed is commonly limited to a narrow pressure ratio and mass flow rate range, while a wider operating domain is experienced on the engine; the turbine thermal conditions realized on the test rig may strongly differ from the coupled-to-engine operation; a “conventional” net turbine efficiency is really measured, since it includes the effects of the heat exchange on the compressor side, together with bearing friction and windage losses.
Journal Article

Map-Based and 1D Simulation of a Turbocharger Compressor in Surging Operation

2011-09-11
2011-24-0126
One-dimensional (1D) models are commonly employed to study the performances of turbocharged engine. Manufacturers' provided steady turbomachinery maps are usually utilized, although they operate in unsteady conditions as a consequence of pressure pulses propagating into the intake and exhaust systems. This may lead to some inaccuracies in the engine-turbocharger matching calculations, which may be solved through the introduction of proper time-delays (virtual pipe corrections). These drawbacks, however, became more relevant when engine operates under low speed and high load conditions, or during a transient maneuver, because of possibilities of compressor surging.
X