Refine Your Search

Search Results

Viewing 1 to 8 of 8
Journal Article

Hydrogen SI and HCCI Combustion in a Direct-Injection Optical Engine

2009-06-15
2009-01-1921
Hydrogen has been largely proposed as a possible alternative fuel for internal combustion engines. Its wide flammability range allows higher engine efficiency with leaner operation than conventional fuels, for both reduced toxic emissions and no CO2 gases. Independently, Homogenous Charge Compression Ignition (HCCI) also allows higher thermal efficiency and lower fuel consumption with reduced NOX emissions when compared to Spark-Ignition (SI) engine operation. For HCCI combustion, a mixture of air and fuel is supplied to the cylinder and autoignition occurs from compression; engine is operated throttle-less and load is controlled by the quality of the mixture, avoiding the large fluid-dynamic losses in the intake manifold of SI engines. HCCI can be induced and controlled by varying the mixture temperature, either by Exhaust Gas Recirculation (EGR) or intake air pre-heating.
Technical Paper

Numerical Investigations on Strong Knocking Combustion under Advanced Compression Ignition Conditions

2020-04-14
2020-01-1137
Homogeneous charge compression ignition (HCCI) combined with high compression ratio is an effective way to improve engines’ thermal efficiency. However, the severe thermodynamic conditions at high load may induce knocking combustion thus damage the engine body. In this study, advanced compression ignition knocking characteristics were parametrically investigated through RCM experiments and simulation analysis. First, the knocking characteristics were optically investigated. The experimental results show that there even exists detonation when the knock occurs thus the combustion chamber is damaged. Considering both safety and costs, the effects of different initial conditions were numerically investigated and the results show that knocking characteristics is more related to initial pressure other than initial temperature. The initial pressure has a great influence on peak pressure and knock intensity while the initial temperature on knock onset.
Technical Paper

Characteristics of HCCI Diesel Combustion Operated with a Hollow Cone Spray

2003-05-19
2003-01-1823
This paper presents two factors for improving the performance and emissions characteristics in HCCI diesel combustion, one is reducing compression ratio and another is changing the injector position. In a previous study, it was shown that HCCI diesel combustion could be realized by utilizing a hollow-cone spray with normal injection pressure. However there remained two major problems of engine instability and increase in BSFC (decrease in brake thermal efficiency). By reducing the compression ratio from 18.8 to 16.8, the engine stability was much improved to the level of conventional diesel combustion and the increase in BSFC became almost half, which was mainly due to the change of combustion phasing. In addition to this, application of 5 mm inside position of the injector realized almost no penalty of BSFC at higher load condition.
Technical Paper

Similarity Analysis of the Chemical Kinetic Mechanism on the Ignition Delay in Shock Tubes and Homogeneous Charge Compression Ignition (HCCI) Engines

2017-10-08
2017-01-2260
The chemical kinetic mechanism determines the ignition timing of homogeneous charge compression ignition (HCCI) engines. The correlation of the ignition delay in shock tubes and HCCI engines under different operating conditions was studied with a reduced mechanism of the primary reference fuel (PRF) composing of n-heptane and iso-octane. According to the similarity analysis of the sensitivity coefficient, the operating conditions which affect the similarity factor are recognized. The results indicate that, under the negative temperature coefficient (NTC) region of the ignition delay in shock tubes, the weight of each reaction on the ignition delay in shock tubes is similar to that in HCCI engines. The ignition delay time in HCCI engines is defined as the period from the time of start of heat release (SHR) with the HRR greater than zero to CA10. At the high equivalence ratios in shock tubes, the similarity factor at the low ambient temperatures is small.
Technical Paper

Numerical Study on a High Efficiency Gasoline Reformed Molecule HCCI Combustion Using Exergy Analysis

2017-03-28
2017-01-0735
In this study, the characteristics and the advantages on engine performance of the reformed molecule HCCI (RM-HCCI) combustion fueled with gasoline were investigated by exergy analysis. The processes of fuel reforming and the closed portion of the engine cycle were simulated integrated with chemical kinetics mechanism at varied compression ratio (CR) and constant speed conditions. Results showed the fuel reforming under high temperature and oxygen-free condition by the exhaust heat recovery and electric heating assistance could drive gasoline to transform to the small-molecule gas fuels, meanwhile enhanced the chemical exergy of the fuel. The reformed fuel contributed to extending ignition delay, so less dilution required in RM-HCCI engine when expanding high load compared with gasoline HCCI engine. Thus, RM-HCCI engine could achieve higher load than gasoline HCCI engine, with the improvements by 12%, 26%, and 31% at CR17, CR19, and CR21, respectively.
Technical Paper

Experimental Investigation of Combustion and Emission Characteristics of the Direct Injection Dimethyl Ether Enabled Micro-Flame Ignited (MFI) Hybrid Combustion in a 4-Stroke Gasoline Engine

2018-04-03
2018-01-1247
Controlled Auto-Ignition (CAI), also known as Homogeneous Charge Compression Ignition (HCCI), has the potential to improve gasoline engines’ efficiency and simultaneously achieve ultra-low NOx emissions. Two of the primary obstacles for applying CAI combustion are the control of combustion phasing and the maximum heat release rate. To solve these problems, dimethyl ether (DME) was directly injected into the cylinder to generate multi-point micro-flame through compression in order to manage the entire heat release of gasoline in the cylinder through port fuel injection, which is known as micro-flame ignited (MFI) hybrid combustion.
Technical Paper

Effects of Low Temperature Reforming (LTR) Products of Low Octane Number Fuels on HCCI Combustion

2018-09-10
2018-01-1682
In order to achieve high-efficiency and clean combustion in HCCI engines, combustion must be controlled reasonably. A great variety of species with various reactivities can be produced through low temperature oxidation of fuels, which offers possible solutions to the problem of controlling in-cylinder mixture reactivity to accommodate changes in the operating conditions. In this work, in-cylinder combustion characteristics with low temperature reforming (LTR) were investigated in an optical engine fueled with low octane number fuel. LTR was achieved through low temperature oxidation of fuels in a reformer (flow reactor), and then LTR products (oxidation products) were fed into the engine to alter the charge reactivity. Primary Reference Fuels (blended fuel of n-heptane and iso-octane, PRFs) are often used to investigate the effects of octane number on combustion characteristics in engines.
Journal Article

Evaluation of Spray/Wall Interaction Models under the Conditions Related to Diesel HCCI Engines

2008-06-23
2008-01-1632
Diesel homogeneous charge compression ignition (HCCI) engines with early injection can result in significant spray/wall impingement which seriously affects the fuel efficiency and emissions. In this paper, the spray/wall interaction models which are available in the literatures are reviewed, and the characteristics of modeling including spray impingement regime, splash threshold, mass fraction, size and velocity of the second droplets are summarized. Then three well developed spray/wall interaction models, O'Rourke and Amsden (OA) model, Bai and Gosman (BG) model and Han, Xu and Trigui (HXT) model, are implemented into KIVA-3V code, and validated by the experimental data from recent literatures under the conditions related to diesel HCCI engines. By comparing the spray pattern, droplet mass, size and velocity after the impingement, the thickness of the wall film and vapor distribution with the experimental data, the performance of these three models are evaluated.
X