Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Performance, Emissions and Exhaust-Gas Reforming of an Emulsified Fuel: A Comparative Study with Conventional Diesel Fuel

2009-06-15
2009-01-1809
The fuel reforming technology has been extensively investigated as a way to produce hydrogen on-board a vehicle that can be utilized in internal combustion engines, fuel cells and aftertreatment technologies. Maximization of H2 production in the reforming process can be achieved when there is optimized water (steam) addition for the different reforming temperatures. A way to increase the already available water quantity on-board a vehicle (i.e. exhaust gas water content) is by using emulsified fuel (e.g. water-diesel blend). This study presents the effect of an emulsified diesel fuel (a blend of water and diesel fuel with an organic surfactant to make the mixture stable) on combustion in conjunction with exhaust gas assisted fuel reforming on a compression ignition engine. No engine modification was required to carry out these tests. The emulsified diesel fuel consisted of about 80% (mass basis) of conventional ultra low sulphur diesel (ULSD) fuel and fixed water content.
Technical Paper

Residual Gas Trapping for Natural Gas HCCI

2004-06-08
2004-01-1973
With the high auto ignition temperature of natural gas, various approaches such as high compression ratios and/or intake charge heating are required for auto ignition. Another approach utilizes the trapping of internal residual gas (as used before in gasoline controlled auto ignition engines), to lower the thermal requirements for the auto ignition process in natural gas. In the present work, the achievable engine load range is controlled by the degree of internal trapping of exhaust gas supplemented by intake charge heating. Special valve strategies were used to control the internal retention of exhaust gas. Significant differences in the degree of valve overlap were necessary when compared to gasoline operation at the same speeds and loads, resulting in lower amounts of residual gas observed. The dilution effect of residual gas trapping is hence reduced, resulting in higher NOx emissions for the stoichiometric air/fuel ratio operation as compared to gasoline.
Technical Paper

Exhaust-Gas Reforming of Hydrocarbon Fuels

1993-04-01
931096
This paper presents the findings of theoretical and practical studies of an exhaust-gas reforming process, as applied to hydrocarbon fuels. It is shown that hydrogen-containing gaseous reformed fuels can be produced by the interaction of hot combustion products and an n-heptane feedstock in a small-scale catalytic reforming reactor. Predicted and observed reformed fuel chemical compositions were found to correlate well at the lower reactor space velocities tested, where chemical equilibrium conditions can be closely approached. Under these conditions, respective hydrogen and carbon monoxide yields of around 32 and 20 volume per cent were obtained. Under certain conditions, it was found that carbon solids were deposited on the reforming catalyst. Measures taken to avoid this problem included changes in the reforming oxidant to fuel ratio, and the addition of excess steam to the oxidant composition.
X