Refine Your Search

Topic

Search Results

Journal Article

Combination of In-Cylinder Pressure Signal Analysis and CFD Simulation for Knock Detection Purposes

2009-09-13
2009-24-0019
A detailed analysis of knocking events can help improving engine performance and diagnosis strategies. The paper aim is a better understanding of the phenomena involved in knocking combustions through the combination of CFD and signals analysis tools. CFD simulations have been used in order to reproduce knock effect on the in-cylinder pressure trace. In fact, the in-cylinder pressure signal holds information about waves propagation and heat losses: for the sake of the diagnosis it is important to relate knock severity to knock indexes values. For this purpose, a CFD model has been implemented, able to predict the combustion evolution with respect to Spark Advance, from non-knocking up to heavy knocking conditions. The CFD model validation phase is crucial for a correct representation of both regular and knocking combustions: the operation has been carried out by means of an accurate statistical analysis of experimental in-cylinder pressure data.
Journal Article

Experimental Characterization of the Geometrical Shape of ks-hole and Comparison of its Fluid Dynamic Performance Respect to Cylindrical and k-hole Layouts

2013-09-08
2013-24-0008
Diesel engine performances are strictly correlated to the fluid dynamic characteristics of the injection system. Actual Diesel engines employ injector characterized by micro-orifices operating at injection pressure till 20MPa. These main injection characteristics resulted in the critical relation between engine performance and injector hole shape. In the present study, the authors' attention was focused on the hole geometry influence on the main injector fluid dynamic characteristics. At this purpose, three different nozzle hole shapes were considered: cylindrical, k, and ks nozzle shapes. Because of the lack of information available about ks-hole real geometry, firstly it was completely characterized by the combined use of two non-destructive techniques. Secondly, all the three nozzle layouts were characterized from the fluid dynamic point of view by a fully transient CFD multiphase simulation methodology previously validated by the authors against experimental results.
Technical Paper

Thermal Efficiency Enhancement for Future Rightsized Boosted GDI Engines - Effectiveness of the Operation Point Strategies Depending on the Engine Type

2021-09-05
2021-24-0009
Internal combustion engines are the primary transportation mover for today society and they will likely continue to be for decades to come. Hybridization is the most common solution to reduce the petrol-fuels consumption and to respect the new raw emission limits. The gasoline engines designed for running together with an electric motor need to have a very high thermal efficiency because they must work at high loads, where engine thermal efficiency is close to the maximum one. Therefore, the technical solutions bringing to thermal efficiency enhancement were adopted on HVs (Hybrid Vehicles) prior to conventional vehicles. In these days, these solutions are going to be adopted on conventional vehicles too. The purpose of this work was to trace development guidelines useful for engine designers, based on the target power and focused on the maximization of the engine thermal efficiency, following the engine rightsizing concept.
Technical Paper

Development and Validation of a Virtual Sensor for Estimating the Maximum in-Cylinder Pressure of SI and GCI Engines

2021-09-05
2021-24-0026
This work focuses on the development and validation of a data-driven model capable of predicting the maximum in-cylinder pressure during the operation of an internal combustion engine, with the least possible computational effort. The model is based on two parameters, one that represents engine load and another one the combustion phase. Experimental data from four different gasoline engines, two turbocharged Gasoline Direct Injection Spark Ignition, a Naturally Aspirated SI and a Gasoline Compression Ignition engine, was used to calibrate and validate the model. Some of these engines were equipped with technologies such as Low-Pressure Exhaust Gas Recirculation and Water Injection or a compression ignition type of combustion in the case of the GCI engine. A vast amount of engine points were explored in order to cover as much as possible of the operating range when considering automotive applications and thus confirming the broad validity of the model.
Journal Article

Assessment of Advanced SGS Models for LES Analysis of ICE Wall-Bounded Flows - Part I: Basic Test Case

2016-03-14
2016-01-9041
Large Eddy Simulation (LES) represents nowadays one of the most promising techniques for the evaluation of the dynamics and evolution of turbulent structures characterizing internal combustion engines (ICE). In the present paper, subdivided into two parts, the capabilities of the open-source CFD code OpenFOAM® v2.3.0 are assessed in order to evaluate its suitability for engine cold flow LES analyses. Firstly, the code dissipative attitude is evaluated through an inviscid vortex convection test to ensure that the levels of numerical dissipation are compatible with LES needs. Quality and completeness estimators for LES simulations are then proposed. In particular the Pope M parameter is used as a LES completeness indicator while the LSR parameter provides useful insights far calibrating the grid density. Other parameters such as the two-grid LESIQk index are also discussed.
Journal Article

Combustion Indexes for Innovative Combustion Control

2017-09-04
2017-24-0079
The continuous development of modern Internal Combustion Engine (ICE) management systems is mainly aimed at combustion control improvement. Nowadays, performing an efficient combustion control is crucial for drivability improvement, efficiency increase and pollutant emissions reduction. These aspects are even more crucial when innovative combustions (such as LTC or RCCI) are performed, due to the high instability and the high sensitivity with respect to the injection parameters that are associated to this kind of combustion. Aging of all the components involved in the mixture preparation and combustion processes is another aspect particularly challenging, since not all the calibrations developed in the setup phase of a combustion control system may still be valid during engine life.
Journal Article

A Numerical Model for Flash Boiling of Gasoline-Ethanol Blends in Fuel Injector Nozzles

2011-09-11
2011-24-0003
Fuels are formulated by a variety of different components characterized by chemical and physical properties spanning a wide range of values. Changing the ratio between the mixture component molar fractions, it is possible to fulfill different requirements. One of the main properties that can be strongly affected by mixture composition is the volatility that represents the fuel tendency to vaporize. For example, changing the mixture ratio between alcohols and hydrocarbons, it is possible to vary the mixture saturation pressure, therefore the fuel vaporization ratio during the injection process. This paper presents a 1D numerical model to simulate the superheated injection process of a gasoline-ethanol mixture through real nozzle geometries. In order to test the influence of the mixture properties on flash atomization and flash evaporation, the simulation is repeated for different mixtures characterized by different gasoline-ethanol ratio.
Technical Paper

Experimental Investigation on the Effects of Cooled Low Pressure EGR and Water Injection on Combustion of a Turbocharged GDI Engine

2020-09-27
2020-24-0003
This work focuses on the effects of cooled Low Pressure EGR and Water Injection observed by conducting experimental tests consisting mainly of Spark Advance sweeps at different cooled LP-EGR and WI rates. The implications on combustion and main engine performance indexes are then analysed and modelled with a control-oriented approach, showing that combustion duration and phase and exhaust gas temperature are the main affected parameters. Results show that cooled LP-EGR and WI have similar effects, being the associated combustion speed decrease the main cause of exhaust gas temperature reduction. Experimental data is used to identify control-oriented polynomial models able to capture the effects of LP-EGR and WI on both these aspects. The limitations of LP-EGR are also explored, identifying maximum compressor volumetric flow and combustion stability as the main ones.
Technical Paper

Setup of a 1D Model for Simulating Dynamic Behaviour of External Gear Pumps

2007-10-30
2007-01-4228
External gear pumps are widely used in many different applications because of their relatively low costs and high performances, especially in terms of volumetric and mechanical efficiency. The main weaknesses of external gear pumps can be summarized as follows: 1 Sudden increase or decrease of pressure inside volumes between teeth, which could lead respectively to noise emissions and to cavitation onset; 2 Necessity of limiting power losses and increasing volumetric efficiency, obtainable by reducing leakage flows between components; 3 Need of maintaining an ad-hoc minimum lubrication film thickness. In recent years many efforts, in terms of mathematical models and experimental tests, were done in order to limit energy losses and noise emissions. With the aim of deeply studying dynamic behaviour of external gear pumps and addressing their design, a 1D model was developed by means AMESim® code.
Technical Paper

3D Large Scale Simulation of the High-Speed Liquid Jet Atomization

2007-04-16
2007-01-0244
In this paper three-dimensional Large Eddy Simulations (i.e., LES) by using a PLIC-VOF method have been adopted to investigate the atomization process of round liquid jets issuing from automotive multi-hole injector-like nozzles. LES method is used to compute directly the effect of the large flow structure, being the smallest one modelled. A mesh having a cell size of 4 μm was used in order to derive a statistics of the detached liquid structures, i.e. droplets and ligaments. The latter have been identified by using an algorithm coded by authors. Cavitation modeling has not been included in the present computations. Two different mean injection nozzle flow velocities of 50 m/s and 270 m/s, corresponding to two mean nozzle flow Reynolds numbers of 1600 and 8700, respectively, have been considered in the calculations as representative of laminar and turbulent nozzle flow conditions.
Technical Paper

A Numerical and Experimental Study Towards Possible Improvements of Common Rail Injectors

2002-03-04
2002-01-0500
The aim of this work is to propose modifications to the managing of the 1st generation Common Rail injectors in order to reduce actuation time towards multiple injection strategies. The current Common Rail injector driven by 1st ECU generation is capable of operating under stable conditions with a minimum dwell between two consecutive injections of 1.8 ms. This limits the possibility in using proper and efficient injection strategies for emission control purposes. A previous numerical study, performed by the electro-fluid-mechanical model built up by Matlab-Simulink environment, highlighted different area where injector may be improved with particular emphasis on electronic driving circuit and components design. Experiments carried out at injector Bosch test-bench showed that a proper control of the solenoid valve allowed reducing drastically the standard deviation during the pilot pulses.
Technical Paper

Superheated Sprays of Alternative Fuels for Direct Injection Engines

2012-04-16
2012-01-1261
Alternative and oxygenated fuels are nowadays being studied in order to increase engine efficiency and reduce exhaust emissions and also to limit the automotive industry's economical dependency from crude oil. These fuels are considered more ecological compared to hydrocarbons because they are obtained using renewable sources. Fuels like anhydrous/hydrous ethanol, methanol or alcohol/gasoline blends which are injected in liquid form must vaporize quickly, especially in direct injection engines, therefore their volatility is a very important factor and strongly depends on thermodynamic conditions and chemical properties. When a multi-component fuel blend is injected into a low pressure environment below its saturation pressure, a rapid boiling of the most volatile component triggers a thermodynamic atomization mechanism. These kinds of sprays show smaller droplets and lower penetration compared to mechanical break up.
Technical Paper

Ethanol to Gasoline Ratio Detection via Time-Frequency Analysis of Engine Acoustic Emission

2012-09-10
2012-01-1629
In order to reduce both polluting emissions and fuel costs, many countries allow mixing ethanol to gasoline either in fixed percentages or in variable percentages. The resulting fuel is labeled E10 or E22, where the number specifies the ethanol percentage. This operation significantly changes way the stoichiometric value, which is the air-to-fuel mass ratio theoretically needed to completely burn the mixture. Ethanol concentration must be correctly estimated by the Engine Management System to optimally control exhaust emissions, fuel economy and engine performance. In fact, correct fuel quality recognition allows estimating the actual stoichiometric value, thus allowing the catalyst system to operate at maximum efficiency in any engine working point. Moreover, also other essential engine control functions should be adapted in real time by taking into account the quality of the fuel that is being used.
Technical Paper

Multicycle Simulation of the Mixture Formation Process of a PFI Gasoline Engine

2012-06-01
2011-01-2463
The mixture composition heavily influences the combustion process of Port Fuel Injection (PFI) engines. The local mixture air-index at the spark plug is closely related to combustion instabilities and the cycle-by-cycle Indicated Mean Effective Pressure (IMEP) Coefficient of Variation (CoV) well correlates with the variability of the flame kernel development. The needs of reducing the engine emissions and consumption push the engine manufactures to implement techniques providing a better control of the mixture quality in terms of homogeneity and variability. Simulating the mixture formation of a PFI engine by means of CFD techniques is a critical issue, since involved phenomena are highly heterogeneous and a two phase flow must be considered. The aim of the paper is to present a multi-cycle methodology for the simulation of the injection and the mixture formation processes of high performance PFI engine, based on the validation of all the main physical sub-models involved.
Technical Paper

Primary Breakup Model for Turbulent Liquid Jet Based on Ligament Evolution

2012-04-16
2012-01-0460
The overall performance of direct injection (DI) engines is strictly correlated to the fuel liquid spray evolution into the cylinder volume. More in detail, spray behavior can drastically affect mixture formation, combustion efficiency, cycle to cycle engine variability, soot amount, and lubricant contamination. For this reason, in DI engine an accurate numerical reproduction of the spray behavior is mandatory. In order to improve the spray simulation accuracy, authors defined a new atomization model based on experimental evidences about ligament and droplet formations from a turbulent liquid jet surface. The proposed atomization approach was based on the assumption that the droplet stripping in a turbulent liquid jet is mainly linked to ligament formations. Reynolds-averaged Navier Stokes (RANS) simulation method was adopted for the continuum phase while the liquid discrete phase is managed by Lagrangian approach.
Technical Paper

Development of a Novel Approach for Non-Intrusive Closed-Loop Heat Release Estimation in Diesel Engines

2013-04-08
2013-01-0314
Over the past years, policies affecting pollutant emissions control for Diesel engines have become more and more restrictive. In order to meet such requirements, innovative combustion control methods have currently become a key factor. Several studies demonstrate that the desired pollutant emission reduction can be achieved through a closed-loop combustion control based on in-cylinder pressure processing. Nevertheless, despite the fact that cylinder pressure sensors for on-board application have been recently developed, large scale deployment of such systems is currently hindered by unsatisfactory long term reliability and high costs. Whereas both the accuracy and the reliability of pressure measurement could be improved in future years, pressure sensors would still be a considerable part of the cost of the entire engine management system.
Technical Paper

Ducati 999 Crankcase Strength Increase by Changing the Main Bearing Type

2005-04-11
2005-01-0882
In all Ducati L-twins the crankshaft supports are rolling bearings. Due to the higher performance, compactness and lightness, the service life of the crankcase is becoming shorter and in future can become critical in the Ducati 999, the most powerful engine of the Borgo Panigale company. The engine block sidewalls must be strengthened in order to improve the reliability of the component. This can be done by reducing the size of the main bearing housings by the adoption of the plain bearings which have smaller radial dimensions. The stress field of the Ducati 999 crankcase in the two different configurations is calculated by means of the finite element method, applying the engine load in the critical conditions.
Technical Paper

Effects of Initial Conditions in Multidimensional Combustion Simulations of HSDI Diesel Engines

1999-03-01
1999-01-1180
The effects of numerical methodology in defining the initial conditions and simulating the compression stroke in D.I. diesel engine CFD computations are studied. Lumped and pointwise approaches were adopted in assigning the initial conditions at IVC. The lumped approach was coupled with a two-dimensional calculation of the compression stroke. The pointwise methodology was based on the results of an unsteady calculation of the intake stroke performed by using the STAR-CD code in the realistic engine and port geometry. Full engine and 60 deg. sector meshes were used in the compression stroke calculations in order to check the accuracy of the commonly applied axi-symmetric fluid dynamics assumption. Analysis of the evolution of the main fluid dynamics parameters revealed that local conditions at the time of injection strongly depend on the numerical procedure adopted.
Technical Paper

Modeling the Diesel Fuel Spray Breakup by Using a Hybrid Model

1999-03-01
1999-01-0226
Diesel engine CFD simulation is challenged by the need to improve the accuracy in the spray modeling due to the strong influence played by spray dynamics on evaporation rate, flow field, combustion process and emissions. This paper aims to present a hybrid model able to describe both primary and secondary breakup of high-dense high-pressure sprays. According to this approach, the model proposed by Huh and Gosman is used to compute the atomization of the liquid jet (primary breakup) while a modified version of the TAB model of O'Rourke and Amsden is used for the secondary breakup. The atomization model considers the jet turbulence at the nozzle exit and the growth of unstable wave on the jet surface. In order to validate the hybrid model, a free non-evaporating high-pressure-driven spray at engine like conditions has been simulated. The accuracy of the breakup time evaluation has been improved by tuning the TAB constant Ck according to the Pilch's experimental correlations.
Technical Paper

Analysis of the Mixture Formation at Partial Load Operating Condition: The Effect of the Throttle Valve Rotational Direction

2015-09-06
2015-24-2410
In the next incoming future the necessity of reducing the raw emissions leads to the challenge of an increment of the thermal engine efficiency. In particular it is necessary to increase the engine efficiency not only at full load but also at partial load conditions. In the open literature very few technical papers are available on the partial load conditions analysis. In the present paper the analysis of the effect of the throttle valve rotational direction on the mixture formation is analyzed. The engine was a PFI 4-valves motorcycle engine. The throttle valve opening angle was 17.2°, which lays between the very partial load and the partial load condition. The CFD code adopted for the analysis was the FIRE AVL code v. 2013.2. The exhaust, intake and compression phases till TDC were simulated: inlet/outlet boundary conditions from 1D simulations were imposed.
X