Refine Your Search

Search Results

Viewing 1 to 10 of 10
Journal Article

Emissions and Fuel Economy Evaluation from Two Current Technology Heavy-Duty Trucks Operated on HVO and FAME Blends

2016-04-05
2016-01-0876
Gaseous and particulate matter (PM) emissions were assessed from two current technology heavy-duty vehicles operated on CARB ultra-low sulfur diesel (ULSD), hydrotreated vegetable oil (HVO) blends, and a biodiesel blend. Testing was performed on a 2014 model year Cummins ISX15 vehicle and on a 2010 model year Cummins ISB6.7 vehicle. Both vehicles were equipped with diesel oxidation catalysts (DOC), diesel particulate filter (DPF), and selective catalytic reduction (SCR) systems. Testing was conducted over the Heavy-Duty Urban Dynamometer Driving Schedule (UDDS) and Heavy Heavy-Duty Diesel Truck (HHDDT) Transient Cycle. The results showed lower total hydrocarbons (THC), non-methane hydrocarbons (NMHC), and methane (CH4) emissions for the HVO fuels and the biodiesel blend compared to CARB ULSD. Overall, nitrogen oxide (NOx) emissions showed discordant results, with both increases and decreases for the HVO fuels.
Journal Article

Influence of Different Natural Gas Blends on the Regulated Emissions, Particle Number and Size Distribution Emissions from a Refuse Hauler Truck

2012-09-10
2012-01-1583
Natural gas is a potential alternative to conventional liquid fuels for use in automotive internal combustion engines. The primary goal of this study is to understand how gas composition changes might impact the performance or emissions of a natural gas vehicle or engine. For this study, a waste hauler truck equipped with a 2001 Cummins 8.3L C Gas Plus lean burn spark-ignited engine and an oxidation catalyst was operated on the William H. Martin Refuse Truck Cycle (RTC). This cycle was developed to simulate waste hauler operation and consists of a transport segment, a curbside pickup segment, and a compaction segment.
Journal Article

Evaluation of the Impacts of Biofuels on Emissions for a California Certified Diesel Fuel from Heavy-Duty Engines

2013-04-08
2013-01-1138
The impact of biodiesel and new generation biofuels on emissions from heavy-duty diesel engines was investigated using a California Air Resources Board (CARB) certified diesel fuel as a base fuel. This study was performed on two heavy-duty diesel engines, a 2006 engine and a diesel particle filter (DPF) equipped 2007 engine, on an engine dynamometer over four different test cycles. Emissions from soy-based and animal-based biodiesel, renewable diesel fuel, and gas-to-liquid (GTL) diesel fuel were evaluated at blend levels ranging from 5 to 100%. Consistent with previous studies, particulate matter (PM), hydrocarbons (HC), and carbon monoxide (CO) emissions generally showed increasing reductions with increasing biodiesel and renewable/GTL diesel fuel blend levels for the non-DPF equipped engine. The levels of these reductions were generally comparable to those found in previous studies performed using more typical Federal diesel fuels.
Technical Paper

Gaseous and Particulate Emissions from a Waste Hauler Equipped with a Stoichiometric Natural Gas Engine on Different Fuel Compositions

2016-04-05
2016-01-0799
We assessed gaseous and particulate matter (PM) emissions from a current technology stoichiometric natural gas waste hauler equipped with a 2011 model year 8.9L Cummins Westport ISL-G engine with cooled exhaust gas recirculation (EGR) and three-way catalyst (TWC). Testing was performed on five fuels with varying Wobbe and methane numbers over the William H. Martin Refuse Truck Cycle. The results showed lower nitrogen oxide (NOx) emissions for the low methane fuels (i.e., natural gas fuels with a relatively low methane content) for the transport and curbside cycles. Total hydrocarbon (THC) and methane (CH4) emissions did not show any consistent fuel trends. Non-methane hydrocarbon (NMHC) emissions showed a trend of higher emissions for the fuels containing higher levels of NMHCs. Carbon monoxide (CO) emissions showed a trend of higher emissions for the low methane fuels.
Technical Paper

Effect of Biodiesel Origin on the Regulated and PAH Emissions from a Modern Passenger Car

2011-04-12
2011-01-0615
This study investigates the impact of low concentration biodiesel blends on the regulated and polycyclic aromatic hydrocarbon (PAH) emissions from a modern passenger vehicle. The vehicle was Euro 4 compliant fitted with a direct injection common-rail diesel engine and a diesel oxidation catalyst. Emission and fuel consumption measurements were performed on a chassis dynamometer using constant volume sampling (CVS) technique, following the European regulations. All measurements were conducted over the type approval New European Driving Cycle (NEDC) and the real-traffic-based Artemis driving cycles. Aiming to evaluate the fuel impact on emissions, a soy-based, a palm-based, and a rapeseed oil-based biodiesel were blended with an ultra-low sulfur diesel at proportions of 10, 20, and 30% by volume. The experimental results revealed that emissions of PM, HC and CO decreased with biodiesel over most driving conditions.
Technical Paper

Criteria Emissions, Particle Number Emissions, Size Distributions, and Black Carbon Measurements from PFI Gasoline Vehicles Fuelled with Different Ethanol and Butanol Blends

2013-04-08
2013-01-1147
The introduction of biofuels is seen as a very important measure to reduce the emissions of greenhouse gases from the transport sector. Currently, ethanol is the most widely used renewable fuel for transportation in the US and with the push to use increasingly higher levels of renewable fuels, there has been an accompanying push to further increase the ethanol level in gasoline. In addition to ethanol, butanol, an alcohol which can be produced from biomass sources, has recently received more attention as an alternative to gasoline for use in spark ignition (SI) engines. For this study, two 2007 model year and one 2012 model year light-duty vehicles equipped with a three-way catalyst (TWC) were employed. For the 2007 model year vehicles, emissions and fuel economy measurements were made for E10 (reference fuel), E15, E20, and B16 fuels. The latter corresponds to a blend of gasoline and 16% of butanol, which is the equivalent of E10 in terms of oxygen content.
Technical Paper

Influence of Different Natural Gas Compositions on the Regulated Emissions, Aldehydes, and Particle Emissions from a Transit Bus

2013-04-08
2013-01-1137
Urban air quality in California can have a large impact on the state's economy, natural and managed ecosystems, and human health and mortality. The use of alternative, low-carbon fuels is considered to be an effective measure to meet strict emissions regulations of particulate matter (PM) and oxides of nitrogen (NOx). Natural gas may be a potential alternative to conventional liquid fuels for use in automotive internal combustion engines, and can be used in fulfilling these requirements. The primary objective of this study is to evaluate the impact of varying natural gas composition on the exhaust emissions from a transit bus equipped with a 2003 Cummins C Gas Plus, lean-burn, spark-ignited natural gas engine and an oxidation catalyst while operating on the Central Business District (CBD) cycle on a chassis dynamometer.
Technical Paper

Measurement of Ambient Roadway and Vehicle Exhaust Emissions-An Assessment of Instrument Capability and Initial On-Road Test Results with an Advanced Low Emission Vehicle

2000-03-06
2000-01-1142
The College of Engineering-Center for Environmental Research and Technology at the University of California, Riverside and Honda Motor Company are conducting a cooperative research program to study the emission characteristics and evaluate the environmental impact of advanced technology vehicles designed to have emission rates at, or below, the California ULEV standard. This program involves a number of technical challenges relating to instrumentation capable of measuring emissions at these low levels and utilizing this instrumentation to gather data under realistic conditions that will allow assessments of the environmental impact of these advanced vehicle technologies. This paper presents results on the performance and suitability of a Fourier Transform Infrared (FTIR) based on-board measurement system developed principally by Honda R&D for this task. This system has been designed to simultaneously measure vehicle exhaust and ambient roadway pollutant concentrations.
Technical Paper

Distributed Consensus-Based Cooperative Highway On-Ramp Merging Using V2X Communications

2018-04-03
2018-01-1177
Highway on-ramp merging is considered as one of the main factors that causes traffic congestion on highways. The drivers along the on-ramp need to adjust vehicle speeds and positions to enter the highway, while the drivers on the highway should also carefully accommodate vehicle speeds and positions to avoid collision with the merging vehicles from the on-ramp, which heavily affects upstream traffic flows. In congested traffic conditions, such maneuvers if inefficiently performed will lead to high risks of accidents and excessive energy consumption and pollutant emissions. In this work, we present an innovative approach to this scenario, where distributed consensus protocol is developed for Connected and Automated Vehicles (CAV) to cooperate with each other by using Vehicle-to-X (V2X) communications.
Technical Paper

Heavy-Duty Engines Exhaust Sub-23 nm Solid Particle Number Measurements

2021-02-24
2021-01-5024
The measurement of solid particles down to 10 nm is being incorporated into global technical regulations (GTR). This study explores the measurement of solid particles below 23 nm by using both current and proposed particle number (PN) systems having different volatile particle remover (VPR) methodologies and condensation particle counter (CPC) cutoff diameters. The measurements were conducted in dynamometer test cells using ten diesel and eight natural gas (NG) engines that were going under development for a variety of global emission standards. The PN systems measured solid PN from more than 700 test cycles. The results from the preliminary campaign showed a 10-280% increase in PN emissions with the inclusion of particles below 23 nm.
X