Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Influence of Different Natural Gas Blends on the Regulated Emissions, Particle Number and Size Distribution Emissions from a Refuse Hauler Truck

2012-09-10
2012-01-1583
Natural gas is a potential alternative to conventional liquid fuels for use in automotive internal combustion engines. The primary goal of this study is to understand how gas composition changes might impact the performance or emissions of a natural gas vehicle or engine. For this study, a waste hauler truck equipped with a 2001 Cummins 8.3L C Gas Plus lean burn spark-ignited engine and an oxidation catalyst was operated on the William H. Martin Refuse Truck Cycle (RTC). This cycle was developed to simulate waste hauler operation and consists of a transport segment, a curbside pickup segment, and a compaction segment.
Journal Article

Evaluation of the Impacts of Biofuels on Emissions for a California Certified Diesel Fuel from Heavy-Duty Engines

2013-04-08
2013-01-1138
The impact of biodiesel and new generation biofuels on emissions from heavy-duty diesel engines was investigated using a California Air Resources Board (CARB) certified diesel fuel as a base fuel. This study was performed on two heavy-duty diesel engines, a 2006 engine and a diesel particle filter (DPF) equipped 2007 engine, on an engine dynamometer over four different test cycles. Emissions from soy-based and animal-based biodiesel, renewable diesel fuel, and gas-to-liquid (GTL) diesel fuel were evaluated at blend levels ranging from 5 to 100%. Consistent with previous studies, particulate matter (PM), hydrocarbons (HC), and carbon monoxide (CO) emissions generally showed increasing reductions with increasing biodiesel and renewable/GTL diesel fuel blend levels for the non-DPF equipped engine. The levels of these reductions were generally comparable to those found in previous studies performed using more typical Federal diesel fuels.
Technical Paper

Gaseous and Particulate Emissions from a Waste Hauler Equipped with a Stoichiometric Natural Gas Engine on Different Fuel Compositions

2016-04-05
2016-01-0799
We assessed gaseous and particulate matter (PM) emissions from a current technology stoichiometric natural gas waste hauler equipped with a 2011 model year 8.9L Cummins Westport ISL-G engine with cooled exhaust gas recirculation (EGR) and three-way catalyst (TWC). Testing was performed on five fuels with varying Wobbe and methane numbers over the William H. Martin Refuse Truck Cycle. The results showed lower nitrogen oxide (NOx) emissions for the low methane fuels (i.e., natural gas fuels with a relatively low methane content) for the transport and curbside cycles. Total hydrocarbon (THC) and methane (CH4) emissions did not show any consistent fuel trends. Non-methane hydrocarbon (NMHC) emissions showed a trend of higher emissions for the fuels containing higher levels of NMHCs. Carbon monoxide (CO) emissions showed a trend of higher emissions for the low methane fuels.
X